The dual tiling is called an order-4-6 kisrhombille tiling, made as a complete bisection of the order-4 hexagonal tiling, here with triangles shown in alternating colors. This tiling represents the fundamental triangular domains of [6,4] (*642) symmetry.
Related polyhedra and tilings
*n42 symmetry mutation of omnitruncated tilings: 4.8.2n
Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [6,4] symmetry, and 7 with subsymmetry.
Truncated tetrahexagonal tiling with mirror lines in green, red, and blue: Symmetry diagrams for small index subgroups of [6,4], shown in a hexagonal translational cell within a {6,6} tiling, with a fundamental domain in yellow.
The dual of the tiling represents the fundamental domains of (*642) orbifold symmetry. From [6,4] symmetry, there are 15 small index subgroup by mirror removal and alternation operators. Mirrors can be removed if its branch orders are all even, and cuts neighboring branch orders in half. Removing two mirrors leaves a half-order gyration point where the removed mirrors met. In these images unique mirrors are colored red, green, and blue, and alternately colored triangles show the location of gyration points. The [6+,4+], (32×) subgroup has narrow lines representing glide reflections. The subgroup index-8 group, [1+,6,1+,4,1+] (3232) is the commutator subgroup of [6,4].
Larger subgroup constructed as [6,4*], removing the gyration points of [6,4+], (3*22), index 6 becomes (*3333), and [6*,4], removing the gyration points of [6+,4], (2*33), index 12 as (*222222). Finally their direct subgroups [6,4*]+, [6*,4]+, subgroup indices 12 and 24 respectively, can be given in orbifold notation as (3333) and (222222).
John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
"Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN0-486-40919-8. LCCN99035678.