Share to: share facebook share twitter share wa share telegram print page

Arsen

33As
Arsen
Sampel arsen elemental
Garis spektrum arsen
Sifat umum
Pengucapan
Alotropabu-abu (paling umum), kuning, hitam (lihat alotrop arsen)
Penampilanabu-abu metalik
Arsen dalam tabel periodik
Perbesar gambar

33As
Hidrogen Helium
Litium Berilium Boron Karbon Nitrogen Oksigen Fluorin Neon
Natrium Magnesium Aluminium Silikon Fosforus Belerang Klorin Argon
Kalium Kalsium Skandium Titanium Vanadium Kromium Mangan Besi Kobalt Nikel Tembaga Seng Galium Germanium Arsen Selenium Bromin Kripton
Rubidium Stronsium Itrium Zirkonium Niobium Molibdenum Teknesium Rutenium Rodium Paladium Perak Kadmium Indium Timah Antimon Telurium Iodin Xenon
Sesium Barium Lantanum Serium Praseodimium Neodimium Prometium Samarium Europium Gadolinium Terbium Disprosium Holmium Erbium Tulium Iterbium Lutesium Hafnium Tantalum Wolfram Renium Osmium Iridium Platina Emas Raksa Talium Timbal Bismut Polonium Astatin Radon
Fransium Radium Aktinium Torium Protaktinium Uranium Neptunium Plutonium Amerisium Kurium Berkelium Kalifornium Einsteinium Fermium Mendelevium Nobelium Lawrensium Ruterfordium Dubnium Seaborgium Bohrium Hasium Meitnerium Darmstadtium Roentgenium Kopernisium Nihonium Flerovium Moskovium Livermorium Tenesin Oganeson
P

As

Sb
germaniumarsenselenium
Lihat bagan navigasi yang diperbesar
Nomor atom (Z)33
Golongangolongan 15 (pniktogen)
Periodeperiode 4
Blokblok-p
Kategori unsur  metaloid
Berat atom standar (Ar)
  • 74,921595±0,000006
  • 74,922±0,001 (diringkas)
Konfigurasi elektron[Ar] 4s2 3d10 4p3
Elektron per kelopak2, 8, 18, 5
Sifat fisik
Fase pada STS (0 °C dan 101,325 kPa)padat
Titik sublimasi887 K ​(615 °C, ​1137 °F)
Kepadatan mendekati s.k.5,727 g/cm3
saat cair, pada t.l.5,22 g/cm3
Titik tripel1090 K, ​3628 kPa[3]
Titik kritis1673 K, ? MPa
Kalor peleburanabu-abu: 24,44 kJ/mol
Kalor penguapan34,76 kJ/mol (?)
Kapasitas kalor molar24,64 J/(mol·K)
Tekanan uap
P (Pa) 1 10 100 1 k 10 k 100 k
pada T (K) 553 596 646 706 781 874
Sifat atom
Bilangan oksidasi−3, −2, −1, 0,[4] +1,[5] +2, +3, +4, +5 (oksida agak asam)
ElektronegativitasSkala Pauling: 2,18
Energi ionisasike-1: 947,0 kJ/mol
ke-2: 1798 kJ/mol
ke-3: 2735 kJ/mol
(artikel)
Jari-jari atomempiris: 119 pm
Jari-jari kovalen119±4 pm
Jari-jari van der Waals185 pm
Lain-lain
Kelimpahan alamiprimordial
Struktur kristalrombohedron
Struktur kristal Rhombohedral untuk arsen
Ekspansi kalor5,6 µm/(m·K)[6] (pada s.k.)
Konduktivitas termal50,2 W/(m·K)
Resistivitas listrik333 nΩ·m (suhu 20 °C)
Arah magnetdiamagnetik[7]
Suseptibilitas magnetik molar−5,5×10−6 cm3/mol[8]
Modulus Young8 GPa
Modulus curah22 GPa
Skala Mohs3,5
Skala Brinell1440 MPa
Nomor CAS7440-38-2
Sejarah
Penemuanalkemis Arab (sebelum 815 M)
Isotop arsen yang utama
Iso­top Kelim­pahan Waktu paruh (t1/2) Mode peluruhan Pro­duk
73As sintetis 80,3 hri ε 73Ge
γ
74As sintetis 17,8 hri ε 74Ge
β+ 74Ge
γ
β 74Se
75As 100% stabil
| referensi | di Wikidata

Arsen, arsenik, arsenikum atau warangan[9] adalah sebuah unsur kimia dengan lambang As dan nomor atom 33. Arsen terdapat dalam banyak mineral, biasanya dalam kombinasi dengan belerang dan beberapa logam, tetapi juga sebagai kristal elemental murni. Arsen adalah sebuah metaloid. Ia memiliki berbagai alotrop, tetapi hanya bentuk abu-abu, yang memiliki penampilan metalik, yang penting bagi industri.

Penggunaan utama arsen adalah paduan timbal (misalnya dalam aki mobil dan amunisi). Arsen adalah dopan tipe-n yang umum dalam perangkat elektronik semikonduktor. Ia juga merupakan komponen dari semikonduktor majemuk III–V galium arsenida. Arsen dan senyawanya, terutama trioksida, digunakan dalam produksi pestisida, produk kayu olahan, herbisida, dan insektisida. Aplikasi ini menurun dengan meningkatnya pengakuan terhadap toksisitas arsen dan senyawanya.[10]

Beberapa spesies bakteri dapat menggunakan senyawa arsen sebagai metabolit pernapasan. Sejumlah kecil arsen merupakan unsur makanan penting pada tikus, hamster, kambing, ayam, dan mungkin spesies lainnya. Peran dalam metabolisme manusia tidak diketahui.[11][12][13] Namun, keracunan arsen dapat terjadi dalam kehidupan multisel jika jumlahnya lebih besar dari yang dibutuhkan. Kontaminasi arsen di air tanah adalah masalah yang memengaruhi jutaan orang di seluruh dunia.

Badan Perlindungan Lingkungan Amerika Serikat menyatakan bahwa semua bentuk arsen merupakan risiko serius bagi kesehatan manusia.[14] Badan untuk Zat Beracun dan Pendaftaran Penyakit Amerika Serikat menempatkan arsen sebagai nomor 1 dalam Daftar Prioritas Bahan Berbahaya 2001 di lokasi Superfund.[15] Arsen diklasifikasikan sebagai karsinogen Grup-A.[14]

Karakteristik

Sifat fisik

Struktur kristal umum untuk Sb, AsSb dan As abu-abu

Tiga alotrop arsen yang paling umum adalah arsen abu-abu, kuning, dan hitam, dengan abu-abu menjadi yang paling umum.[16] Arsen abu-abu (As-α, grup ruang R3m No. 166) mengadopsi struktur berlapis ganda yang terdiri dari banyak cincin beranggota enam yang saling bertautan dan acak-acakan. Karena ikatan antarlapisan yang lemah, arsen abu-abu bersifat rapuh dan memiliki kekerasan Mohs yang relatif rendah, yaitu 3,5. Tetangga terdekat dan terdekat-berikutnya membentuk kompleks oktahedron terdistorsi, dengan tiga atom dalam lapisan ganda yang sama sedikit lebih dekat daripada tiga atom berikutnya.[17] Pengepakan yang relatif padat ini menghasilkan kepadatan yang tinggi, yaitu 5,73 g/cm3.[18] Arsen abu-abu adalah sebuah semilogam, tetapi akan menjadi semikonduktor dengan celah pita 1,2–1,4 eV jika diamorfisasi.[19] Arsen abu-abu juga merupakan bentuk yang paling stabil. Arsen kuning lunak dan berlilin, dan agak mirip dengan tetrafosforus (P
4
).[20] Keduanya memiliki empat atom yang tersusun dalam struktur tetrahedron di mana setiap atom terikat pada masing-masing dari tiga atom lainnya dengan ikatan tunggal. Alotrop yang tidak stabil ini, bersifat molekuler, adalah yang paling volatil, paling tidak padat, dan paling beracun. Arsen kuning padat dihasilkan dari pendinginan cepat terhadap uap arsen, As
4
. Ia dengan cepat diubah menjadi arsen abu-abu oleh cahaya. Bentuk kuning ini memiliki kepadatan 1,97 g/cm3.[18] Arsen hitam memiliki struktur yang mirip dengan fosforus hitam.[18] Arsen hitam juga dapat dibentuk dengan mendinginkan uap arsen pada suhu sekitar 100–220 °C dan melalui kristalisasi arsen amorf dengan adanya uap raksa.[21] Ia berbentuk seperti kaca dan rapuh. Arsen hitam juga merupakan konduktor listrik yang buruk.[22] Karena titik tripel arsen adalah 3,628 MPa (35,81 atm), ia tidak memiliki titik lebur pada tekanan standar, tetapi menyublim dari padat menjadi uap pada suhu 887 K (615 °C atau 1137 °F).[3]

Isotop

Arsen terjadi di alam sebagai satu isotop stabil, 75As, sehingga ia merupakan sebuah unsur monoisotop.[23] Hingga tahun 2003, setidaknya 33 radioisotop juga telah disintesis, dengan massa atom berkisar antara 60 hingga 92. Yang paling stabil adalah 73As dengan waktu paruh 80,30 hari. Semua isotop lain memiliki waktu paruh kurang dari satu hari, kecuali 71As (t1/2=65,30 jam), 72As (t1/2=26,0 jam), 74As (t1/2=17,77 hari), 76As (t1/2=1,0942 hari), dan 77As (t1/2=38,83 jam). Isotop yang lebih ringan dari 75As yang stabil cenderung meluruh melalui peluruhan β+, dan isotop yang lebih berat cenderung meluruh melalui peluruhan β, dengan beberapa pengecualian.

Setidaknya 10 isomer nuklir telah dijelaskan, dengan massa atom berkisar antara 66 hingga 84. Isomer arsen yang paling stabil adalah 68mAs dengan waktu paruh 111 detik.[23]

Sifat kimia

Arsen memiliki elektronegativitas dan energi ionisasi yang mirip dengan kongenernya yang lebih ringan, fosforus, sehingga mudah membentuk molekul kovalen dengan sebagian besar nonlogam. Meskipun stabil di udara kering, arsen akan membentuk noda perunggu keemasan saat terpapar kelembapan yang akhirnya menjadi lapisan permukaan hitam.[24] Saat dipanaskan di udara, arsen akan teroksidasi menjadi arsen trioksida; asap dari reaksi ini memiliki bau yang menyerupai bawang putih. Bau ini dapat dideteksi pada mineral arsenida seperti arsenopirit yang dipukul dengan palu.[3] Ia dapat terbakar dalam oksigen untuk membentuk arsen trioksida dan arsen pentoksida, yang memiliki struktur yang sama dengan senyawa fosforus yang lebih terkenal, dan dalam fluorin menghasilkan arsen pentafluorida.[24] Arsen (dan beberapa senyawa arsen) menyublim saat dipanaskan pada tekanan atmosfer, berubah langsung menjadi bentuk gas tanpa intervensi keadaan cair pada suhu 887 K (614 °C).[3] Titik tripelnya adalah 3,63 MPa dan 1.090 K (820 °C).[18][3] Arsen akan membentuk asam arsenat dengan asam nitrat pekat, asam arsenit dengan asam nitrat encer, dan arsen trioksida dengan asam sulfat pekat; namun, ia tidak bereaksi dengan air, alkali, atau asam non-pengoksidasi.[25] Arsen dapat bereaksi dengan beberapa logam untuk membentuk arsenida, meskipun mereka bukanlah senyawa ionik yang mengandung ion As3− karena pembentukan anion semacam itu akan sangat endotermik dan bahkan arsenida golongan 1 memiliki sifat senyawa antarlogam.[24] Seperti germanium, selenium, dan bromin, yang berada setelah deret transisi 3d seperti dirinya, arsen jauh lebih tidak stabil dalam keadaan oksidasi golongannya, +5, daripada tetangga vertikalnya fosforus dan antimon, sehingga arsen pentoksida dan asam arsenat adalah pengoksidasi yang kuat.[24]

Senyawa

Senyawa arsen dalam beberapa hal mirip dengan fosforus yang menempati golongan (kolom) yang sama dalam tabel periodik. Keadaan oksidasi yang paling umum untuk arsen adalah: −3 dalam arsenida, yang merupakan senyawa antarlogam seperti-paduan, +3 dalam arsenit, serta +5 dalam arsenat dan sebagian besar senyawa organoarsen. Arsen juga mudah berikatan dengan dirinya sendiri seperti yang terlihat pada ion persegi As3−
4
dalam mineral skuterudit.[26] Dalam keadaan oksidasi +3, arsen biasanya berbentuk piramida karena pengaruh pasangan elektron bebas.[16]

Senyawa anorganik

Salah satu senyawa arsen yang paling sederhana adalah trihidrida yang bersifat piroforik, sangat beracun, dan mudah terbakar, yaitu arsina (AsH3). Senyawa ini umumnya dianggap stabil, karena pada suhu kamar ia terurai hanya secara lambat. Pada suhu 250–300 °C, dekomposisi menjadi arsen dan hidrogen berlangsung cepat.[27] Beberapa faktor seperti kelembapan, adanya cahaya dan katalis tertentu (seperti aluminium) dapat memfasilitasi laju dekomposisi.[28] Ia mudah teroksidasi di udara untuk membentuk arsen trioksida dan air, dan reaksi analog terjadi dengan belerang dan selenium, bukan oksigen.[27]

Arsen membentuk kristal oksida As2O3 ("arsen putih") dan As2O5 yang tidak berwarna dan tidak berbau, serta bersifat higroskopis dan mudah larut dalam air untuk membentuk larutan asam. Asam arsen(V) adalah sebuah asam lemah dan garamnya disebut arsenat,[29] pencemaran arsen di air tanah yang paling umum, dan masalah yang telah memengaruhi banyak orang. Arsen sintetis meliputi Hijau Scheele (kuprihidrogen arsenat, tembaga arsenat asam), kalsium arsenat, dan timbal hidrogen arsenat. Ketiganya telah digunakan sebagai insektisida dan racun pertanian.

Langkah-langkah protonasi antara arsenat dan asam arsenat serupa dengan antara fosfat dan asam fosfat. Tidak seperti asam fosfit, asam arsenit benar-benar tribasa, dengan rumus As(OH)3.[29]

Berbagai macam senyawa belerang bersama arsen telah diketahui. Orpimen (As2S3) dan realgar (As4S4) agak melimpah dan sebelumnya digunakan sebagai pigmen lukisan. Dalam As4S10, arsen memiliki keadaan oksidasi formal +2 pada As4S4 yang menampilkan ikatan As–As sehingga kovalensi total As tetap 3.[30] Baik orpimen maupun realgar, serta As4S3, memiliki analog selenium; analog As2Te3 dikenal sebagai mineral kalgoorlieit,[31] dan anion As2Te dikenal sebagai sebuah ligan dalam kompleks kobalt.[32]

Semua trihalida arsen(III) telah dikenal kecuali astatida, yang masih tidak diketahui. Arsen pentafluorida (AsF5) adalah satu-satunya pentahalida yang penting, mencerminkan stabilitas yang lebih rendah dari keadaan oksidasi +5; meski demikian, ia adalah sebuah zat fluorinasi dan pengoksidasi yang sangat kuat. (Pentaklorida stabil hanya di bawah suhu −50 °C, pada suhu di mana ia terurai menjadi triklorida, melepaskan gas klorin.[18])

Paduan

Arsen digunakan sebagai unsur golongan 5 dalam semikonduktor III-V galium arsenida, indium arsenida, dan aluminium arsenida.[33] Jumlah elektron valensi GaAs sama dengan sepasang atom Si, tetapi struktur pitanya benar-benar berbeda yang menghasilkan sifat curah yang berbeda.[34] Paduan arsen lainnya termasuk semikonduktor II-V kadmium arsenida.[35]

Senyawa organoarsen

Trimetilarsina

Berbagai macam senyawa organoarsen telah diketahui. Beberapa di antaranya dikembangkan sebagai agen perang kimia selama Perang Dunia I, termasuk vesikan seperti lewisit dan agen muntah seperti adamsit.[36][37][38] Asam kakodilat, yang menarik secara historis dan praktis, muncul dari metilasi arsen trioksida, sebuah reaksi yang tidak memiliki analogi dalam kimia fosforus. Kakodil adalah senyawa organologam pertama yang diketahui (walaupun arsen bukanlah logam sejati) dan dinamai dari bahasa Yunani κακωδία "bau" karena baunya yang menyengat; ia sangat beracun.[39]

Keterjadian dan produksi

Sampel arsen asli besar

Arsen membentuk sekitar 1,5 ppm (0,00015%) kerak Bumi, dan merupakan unsur paling melimpah ke-53. Konsentrasi latar belakang khas arsen tidak melebihi 3 ng/m3 di atmosfer; 100 mg/kg dalam tanah; 400 μg/kg dalam tumbuh-tumbuhan; 10 μg/L dalam air tawar dan 1,5 μg/L dalam air laut.[40]

Mineral dengan rumus MAsS dan MAs2 (M = Fe, Ni, Co) adalah sumber arsen komersial yang dominan, bersama dengan realgar (sebuah mineral arsen sulfida) dan arsen asli (elemental). Salah satu mineral ilustratif adalah arsenopirit (FeAsS), yang secara struktural terkait dengan besi pirit. Banyak mineral kecil yang mengandung As telah diketahui. Arsen juga terjadi dalam berbagai bentuk organik di lingkungan.[41]

Output arsen pada tahun 2006[42]

Pada tahun 2014, Tiongkok menjadi produsen arsen putih utama dengan pangsa dunia hampir 70%, diikuti oleh Maroko, Rusia, dan Belgia, menurut Survei Geologi Britania Raya dan Survei Geologi Amerika Serikat.[43] Sebagian besar operasi pemurnian arsen di A.S. dan Eropa telah ditutup karena masalah lingkungan. Arsen ditemukan dalam debu peleburan dari pelebur tembaga, emas, dan timbal, dan diperoleh terutama dari debu pemurnian tembaga.[44]

Pada pemanggangan arsenopirit di udara, arsen akan menyublim sebagai arsen(III) oksida meninggalkan besi oksida,[41] sementara pemanggangan tanpa udara menghasilkan produksi arsen abu-abu. Pemurnian lebih lanjut dari belerang dan kalkogen lainnya dicapai melalui sublimasi dalam ruang hampa, dalam atmosfer hidrogen, atau melalui distilasi dari campuran timbal–arsen cair.[45]

Peringkat Negara Produksi As2O3 2014[43]
1  Tiongkok 25.000 T
2  Maroko 8.800 T
3  Rusia 1.500 T
4  Belgia 1.000 T
5  Bolivia 52 T
6  Jepang 45 T
Total Dunia (dibulatkan) 36.400 T

Sejarah

Realgar
Lambang alkimia untuk arsen

Kata arsenik berasal dari kata Suryani ܙܪܢܝܟܐ zarnika,[46][butuh sumber yang lebih baik] dari bahasa Arab al-zarnīḵ الزرنيخ 'orpimen', berdasarkan bahasa Persia zar 'emas' dari kata زرنيخ zarnikh, yang berarti "kuning" (secara harfiah berarti "berwarna emas") dan karenanya "orpimen (kuning)". Ia diadopsi ke dalam bahasa Yunani sebagai arsenikon (ἀρσενικόν), suatu bentuk yang merupakan etimologi rakyat, menjadi bentuk netral dari kata Yunani arsenikos (ἀρσενικός), yang berarti "laki-laki", "jantan".

Kata Yunani diadopsi dalam bahasa Latin sebagai arsenicum, yang dalam bahasa Prancis menjadi arsenic, dari mana kata bahasa Inggris arsenic diambil.[46][butuh sumber yang lebih baik] Arsen sulfida (orpimen, realgar) dan oksida telah dikenal dan digunakan sejak zaman kuno.[47] Zosimos (sekitar 300 M) menjelaskan pemanggangan sandarach (realgar) untuk mendapatkan awan arsen (arsen trioksida), yang kemudian direduksi menjadi arsen abu-abu.[48] Karena gejala keracunan arsen tidak terlalu spesifik, arsen sering digunakan untuk pembunuhan hingga munculnya uji Marsh, suatu uji kimiawi yang sensitif terhadap keberadaannya. (Uji lain yang kurang sensitif tetapi lebih umum adalah uji Reinsch.) Karena penggunaannya oleh kelas penguasa untuk membunuh satu sama lain dan potensi serta kerahasiaannya, arsen disebut sebagai "racun raja" dan "raja racun".[49] Di era Renaisans, arsen dikenal sebagai "bubuk warisan" karena digunakan untuk membunuh anggota keluarga lain.[50]

Labirin arsen, bagian dari Tambang Botallack, Cornwall

Selama Zaman Perunggu, arsen sering dimasukkan ke dalam perunggu, yang membuat paduannya lebih keras (disebut "perunggu arsen").[51][52] Isolasi arsen dijelaskan oleh Jabir bin Hayyan sebelum tahun 815 M.[53] Albertus Magnus (Albertus Agung, 1193–1280) kemudian mengisolasi unsur ini dari suatu senyawa pada tahun 1250, dengan memanaskan sabun bersama dengan arsen trisulfida.[54] Pada tahun 1649, Johann Schröder menerbitkan dua cara untuk membuat arsen.[55] Kristal arsen elemental (asli) dapat ditemukan di alam, meski jarang.

Cairan berasap Cadet (kakodil tidak murni), sering diklaim sebagai senyawa organologam sintetis pertama, disintesis pada tahun 1760 oleh Cadet de Gassicourt melalui reaksi kalium asetat dengan arsen trioksida.[56]

Kartun satir karya Honoré Daumier tentang seorang kimiawan yang mendemonstrasikan arsen di depan umum, 1841

Di era Victoria, "arsen" ("arsen putih" atau arsen trioksida) dicampur dengan cuka dan kapur dan dimakan oleh para wanita untuk memperbaiki corak wajah mereka, membuat kulit mereka lebih pucat untuk menunjukkan bahwa mereka tidak bekerja di ladang.[57] Penggunaan arsen yang tidak disengaja dalam pemalsuan bahan makanan menyebabkan keracunan manisan Bradford pada tahun 1858, yang mengakibatkan 21 kematian.[58] Produksi kertas dinding juga mulai menggunakan pewarna yang terbuat dari arsen, yang dianggap dapat meningkatkan kecerahan pigmen.[59]

Dua pigmen arsen telah digunakan secara luas sejak penemuannya – Hijau Paris dan Hijau Scheele. Setelah toksisitas arsen diketahui secara luas, bahan kimia ini lebih jarang digunakan sebagai pigmen dan lebih sering digunakan sebagai insektisida. Pada tahun 1860-an, produk sampingan arsen dari produksi pewarna, Ungu London, digunakan secara luas. Ini adalah campuran padat dari arsen trioksida, anilin, kapur, dan feroksida, yang tidak larut dalam air dan sangat beracun jika terhirup atau tertelan.[60] Tetapi, ia kemudian diganti dengan Hijau Paris, pewarna berbasis arsen lainnya.[61] Dengan pemahaman yang lebih baik mengenai mekanisme toksikologi, dua senyawa lain digunakan mulai tahun 1890-an.[62] Arsenit kapur dan arsenat timbal digunakan secara luas sebagai insektisida hingga ditemukannya DDT pada tahun 1942.