Share to: share facebook share twitter share wa share telegram print page

SOX9

SOX9
已知的結構
PDB直系同源搜索: PDBe RCSB
識別號
别名SOX9;, CMD1, CMPD1, SRA1, SRXX2, SRXY10, SRY-box 9, SRY-box transcription factor 9
外部IDOMIM608160 MGI98371 HomoloGene294 GeneCardsSOX9
基因位置(人类
17號染色體
染色体17號染色體[1]
17號染色體
SOX9的基因位置
SOX9的基因位置
基因座17q24.3起始72,121,020 bp[1]
终止72,126,416 bp[1]
RNA表达模式


查阅更多表达数据
直系同源
物種人類小鼠
Entrez
Ensembl
UniProt
mRNA​序列

NM_000346

NM_011448

蛋白序列

NP_000337

NP_035578

基因位置​(UCSC)Chr 17: 72.12 – 72.13 MbChr 11: 112.67 – 112.68 Mb
PubMed​查找[3][4]
維基數據
檢視/編輯人類檢視/編輯小鼠

轉錄因子SOX9是一種蛋白質,在人類中由SOX9基因編碼,是塞特利氏細胞等细胞的标志物。[5][6]

功能

SOX9識別序列CCTTGAG,與其他HMG-boxDNA結合蛋白一起發揮作用。它由增殖但非肥大軟骨細胞表達,對於前體細胞分化為軟骨細胞至關重要[7],並且與類固醇生成因子1一起調節抗苗勒氏激素(AMH)基因的轉錄。[6]

SOX9也在雄性性發育中扮演著關鍵角色;通過與Sf1協同作用,SOX9可以在賽特利氏細胞中產生AMH,以抑制女性生殖系統的形成。[8] 它還與其他幾個基因互作,以促進雄性生殖器官的發育。該過程始於轉錄因子睾丸決定因子(由Y染色體的性別決定區SRY編碼)通過結合在該基因上游的一段增強子序列,激活SOX9活性。[9] 接著,SOX9活化FGF9並與FGF9形成前饋迴路[10]PGD2[9]

這些迴路對於產生SOX9十分重要;如果沒有這些迴路,SOX9將會耗盡,且幾乎可以確定會出現女性的發育。SOX9活化FGF9啟動男性發育中的重要過程,例如創建睪丸索以及塞特利氏細胞的增殖。[10] SOX9與Dax1的結合實際上會產生塞爾托利細胞,這是雄性發育中另一個重要的過程。[11]大腦發育中,其小鼠直系同源基因SOX9誘導Wwp1Wwp2和miR-140的表達,以調節新生神經細胞進入皮質板,並調節皮質神經元的軸突分支和軸突形成。[12]

Sox9,也被稱為SRY-Box轉錄因子9,是性別決定中一個重要的基因。SOX家族基因全都是Y染色體性別決定因子SRY的轉錄因子。SRY基因編碼SOX轉錄因子,同時它上調Sox9。Sox9之後啟動Fgf9,即成纖維細胞生長因子9,這也是雄性腺體形成過程中的另一個關鍵轉錄因子。Fgf9通過正向前饋級聯上調Sox9,這導致塞特利氏細胞分化,最終形成睪丸。[13]

SOX9是Notch訊息傳遞途徑以及Hedgehog途徑的標靶,[14]並在調節神經幹細胞命運中扮演角色。體內和體外研究顯示SOX9對神經元生成具有負調控作用,對膠質細胞生成和幹細胞存活具有正調控作用。[15]

在成年關節軟骨細胞中,通過siRNA介導的SOX9或RTL3敲低會導致另一個基因的下調,以及II型膠原蛋白COL2A1)mRNA和蛋白表達的降低。[16]

在缺乏SRY的情況下,於XY性腺中過度表現SOX9可以進一步促進雄性性別決定和睾丸發育。[17] 亦可發現,在XX性腺異位表現SOX9,即使在缺乏SRY的情況下亦會導致睾丸的發育。[18] 這兩者皆證明,SOX9在缺乏SRY的情況下,無論在XX或XY性腺中,仍將持續於睾丸發育、睾丸分化和性別決定上發揮關鍵作用。亦有詳細說明SOX9可替代SRY的功能。[19][20]

臨床意義

突變會導致骨骼畸形症候群彎骨發育不全,通常伴有常染色體性別反轉[6]裂顎[21]

SOX9位於人類17q24的基因沙漠中。SOX9兩側距轉錄單位超過1Mb的高度保守非編碼元件的缺失、被易位斷點干擾以及單點突變,都與皮埃爾·羅賓序列相關,且常伴有顎裂[21][22]

SOX9蛋白已被認為與多種實質固態瘤(solid tumors)的發生和進展有關。[23] 其作為形態發生的主調節因子在人體發育過程中的角色,使其成為惡性組織中擾動的理想候選者。具體而言,SOX9似乎在前列腺、[24]結直腸、[25]乳腺[26]和其他癌症中誘導侵襲性和治療抵抗性,從而促進致命的轉移。[27]SOX9的許多這些致癌效應似乎是劑量依賴的。[28][24][23]

SOX9 的定位和動態

SOX9 主要定位於細胞核中,且具有高度的流動性。對軟骨細胞系的研究顯示,近50%的 SOX9 與 DNA 結合,並且直接受到外部因素的調控。其在 DNA 上的駐留半衰期約為14秒。[29]

在性別分化中的角色

SOX9幫助引導SRY在性別分化中的激活。SOX9或任何相關基因的突變可能導致性別逆轉。如果SOX9激活的FGF9不存在,具有X和Y染色體胎兒將成為女性。[9] 如果DAX1不存在,情況也是如此。[11] 相關現象可能由於SRY在XX男性綜合症中的不尋常活動引起,通常是當它轉位到X染色體上並且其活動僅在某些細胞中被激活時。[30] SOX9的突變或缺失可能導致XY胎兒成為女性,因為SOX9是一個關鍵的效應基因,通過SRY基因作用來分化支持細胞並推動男性睾丸的形成。[13]

相互作用

已顯示SOX9與類固醇生成因子1[8]MED12[31]MAF[32]SWI/SNFMLL3MLL4發生相互作用[33]

基因剔除模型

SOX9的功能喪失突變可能導致彎曲肢體發育不全症(CD),這是由於影響蛋白質功能的突變和破壞基因表達的易位。已經有SOX9基因剔除小鼠顯示出中風恢復的改善,特別是在抑制如NOGO和硫酸軟骨素蛋白聚糖(CSPGs)等軸突萌芽抑制劑時。SOX9的去除導致CSPG水平降低,這增加了組織保護並改善了中風後的神經恢復。這些SOX9基因剔除小鼠促進修復性軸突萌芽、神經保護和中風後的恢復。[34]

參見

進一步閱讀

参考文献

  1. ^ 1.0 1.1 1.2 GRCh38: Ensembl release 89: ENSG00000125398 - Ensembl, May 2017
  2. ^ 2.0 2.1 2.2 GRCm38: Ensembl release 89: ENSMUSG00000000567 - Ensembl, May 2017
  3. ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  4. ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  5. ^ Tommerup N, Schempp W, Meinecke P, Pedersen S, Bolund L, Brandt C, Goodpasture C, Guldberg P, Held KR, Reinwein H. Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1. Nature Genetics. June 1993, 4 (2): 170–174. PMID 8348155. S2CID 12263655. doi:10.1038/ng0693-170. 
  6. ^ 6.0 6.1 6.2 Entrez Gene: SOX9 SRY (sex determining region Y)-box 9 (campomelic dysplasia, autosomal sex-reversal). 
  7. ^ Kumar V, Abbas AK, Aster JC. Robbins and Cotran pathologic basis of disease Ninth. Elsevier/Saunders. 2015: 1182. ISBN 9780808924500. 
  8. ^ 8.0 8.1 De Santa Barbara P, Bonneaud N, Boizet B, Desclozeaux M, Moniot B, Sudbeck P, Scherer G, Poulat F, Berta P. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene. Molecular and Cellular Biology. November 1998, 18 (11): 6653–6665. PMC 109250可免费查阅. PMID 9774680. doi:10.1128/mcb.18.11.6653. 
  9. ^ 9.0 9.1 9.2 Moniot B, Declosmenil F, Barrionuevo F, Scherer G, Aritake K, Malki S, Marzi L, Cohen-Solal A, Georg I, Klattig J, Englert C, Kim Y, Capel B, Eguchi N, Urade Y, Boizet-Bonhoure B, Poulat F. The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development. June 2009, 136 (11): 1813–1821. PMC 4075598可免费查阅. PMID 19429785. doi:10.1242/dev.032631. 
  10. ^ 10.0 10.1 Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLOS Biology. June 2006, 4 (6): e187. PMC 1463023可免费查阅. PMID 16700629. doi:10.1371/journal.pbio.0040187可免费查阅. 
  11. ^ 11.0 11.1 Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, Eicher EM. Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development. July 2005, 132 (13): 3045–3054. PMID 15944188. doi:10.1242/dev.01890可免费查阅. 
  12. ^ Ambrozkiewicz MC, Schwark M, Kishimoto-Suga M, Borisova E, Hori K, Salazar-Lázaro A, Rusanova A, Altas B, Piepkorn L, Bessa P, Schaub T, Zhang X, Rabe T, Ripamonti S, Rosário M, Akiyama H, Jahn O, Kobayashi T, Hoshino M, Tarabykin V, Kawabe H. Polarity Acquisition in Cortical Neurons Is Driven by Synergistic Action of Sox9-Regulated Wwp1 and Wwp2 E3 Ubiquitin Ligases and Intronic miR-140. Neuron. December 2018, 100 (5): 1097–1115.e15. PMID 30392800. doi:10.1016/j.neuron.2018.10.008可免费查阅. 
  13. ^ 13.0 13.1 Gonen N, Quinn A, O'Neill HC, Koopman P, Lovell-Badge R. Normal Levels of Sox9 Expression in the Developing Mouse Testis Depend on the TES/TESCO Enhancer, but This Does Not Act Alone. PLOS Genetics. January 2017, 13 (1): e1006520. PMC 5207396可免费查阅. PMID 28045957. doi:10.1371/journal.pgen.1006520可免费查阅. 
  14. ^ Place E, Manning E, Kim DW, Kinjo A, Nakamura G and Ohyama K (2022) SHH and Notch regulate SOX9+ progenitors to govern arcuate POMC neurogenesis. Front. Neurosci. 16:855288. doi: 10.3389/fnins.2022.855288
  15. ^ Vogel, Julia K.; Wegner, Michael PhD,*. Sox9 in the developing central nervous system: a jack of all trades?. Neural Regeneration Research 16(4):p 676-677, April 2021. | DOI: 10.4103/1673-5374.295327
  16. ^ Ball HC, Ansari MY, Ahmad N, Novak K, Haqqi TM. A retrotransposon gag-like-3 gene RTL3 and SOX-9 co-regulate the expression of COL2A1 in chondrocytes. Connective Tissue Research. November 2021, 62 (6): 615–628. PMC 8404968可免费查阅. PMID 33043724. doi:10.1080/03008207.2020.1828380. 
  17. ^ Ortega, Egle A., et al. “Sry-Independent Overexpression of Sox9 Supports Spermatogenesis and Fertility in the Mouse.” Biology of Reproduction, vol. 93, no. 6, 1 Dec. 2015, pp. 1–12, https://doi.org/10.1095/biolreprod.115.135400.
  18. ^ Vidal, Valerie P.I., et al. “Sox9 induces testis development in XX transgenic mice.” Nature Genetics, vol. 28, July 2001, pp. 216–217, https://doi.org/10.1038/90046.
  19. ^ Ortega, Egle A., et al. “Sry-Independent Overexpression of Sox9 Supports Spermatogenesis and Fertility in the Mouse.” Biology of Reproduction, vol. 93, no. 6, 1 Dec. 2015, pp. 1–12, https://doi.org/10.1095/biolreprod.115.135400.
  20. ^ Vidal, Valerie P.I., et al. “Sox9 induces testis development in XX transgenic mice.” Nature Genetics, vol. 28, July 2001, pp. 216–217, https://doi.org/10.1038/90046.
  21. ^ 21.0 21.1 Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nature Reviews. Genetics. March 2011, 12 (3): 167–178. PMC 3086810可免费查阅. PMID 21331089. doi:10.1038/nrg2933. 
  22. ^ Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, McBride D, Golzio C, Fisher M, Perry P, Abadie V, Ayuso C, Holder-Espinasse M, Kilpatrick N, Lees MM, Picard A, Temple IK, Thomas P, Vazquez MP, Vekemans M, Roest Crollius H, Hastie ND, Munnich A, Etchevers HC, Pelet A, Farlie PG, Fitzpatrick DR, Lyonnet S. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nature Genetics. March 2009, 41 (3): 359–364. PMID 19234473. S2CID 29933548. doi:10.1038/ng.329. 
  23. ^ 23.0 23.1 Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, Kang R, Shi LL, Mok J, Lee MJ, Haydon RC. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes & Diseases. December 2014, 1 (2): 149–161. PMC 4326072可免费查阅. PMID 25685828. doi:10.1016/j.gendis.2014.09.004. 
  24. ^ 24.0 24.1 Nouri M, Massah S, Caradec J, Lubik AA, Li N, Truong S, Lee AR, Fazli L, Ramnarine VR, Lovnicki JM, Moore J, Wang M, Foo J, Gleave ME, Hollier BG, Nelson C, Collins C, Dong X, Buttyan R. Transient Sox9 Expression Facilitates Resistance to Androgen-Targeted Therapy in Prostate Cancer. Clinical Cancer Research. April 2020, 26 (7): 1678–1689. PMID 31919137. doi:10.1158/1078-0432.CCR-19-0098可免费查阅. 
  25. ^ Prévostel C, Blache P. The dose-dependent effect of SOX9 and its incidence in colorectal cancer. European Journal of Cancer. November 2017, 86: 150–157. PMID 28988015. doi:10.1016/j.ejca.2017.08.037. 
  26. ^ Grimm D, Bauer J, Wise P, Krüger M, Simonsen U, Wehland M, Infanger M, Corydon TJ. The role of SOX family members in solid tumours and metastasis. Seminars in Cancer Biology. December 2020, 67 (Pt 1): 122–153. PMID 30914279. doi:10.1016/j.semcancer.2019.03.004可免费查阅. hdl:21.11116/0000-0007-D3EE-F可免费查阅. 
  27. ^ Aguilar-Medina M, Avendaño-Félix M, Lizárraga-Verdugo E, Bermúdez M, Romero-Quintana JG, Ramos-Payan R, Ruíz-García E, López-Camarillo C. SOX9 Stem-Cell Factor: Clinical and Functional Relevance in Cancer. Journal of Oncology. 2019, 2019: 6754040. PMC 6463569可免费查阅. PMID 31057614. doi:10.1155/2019/6754040可免费查阅. 
  28. ^ Yang X, Liang R, Liu C, Liu JA, Cheung MP, Liu X, Man OY, Guan XY, Lung HL, Cheung M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. Journal of Experimental & Clinical Cancer Research. January 2019, 38 (1): 17. PMC 6330758可免费查阅. PMID 30642390. doi:10.1186/s13046-018-0998-6可免费查阅. 
  29. ^ Govindaraj K, Hendriks J, Lidke DS, Karperien M, Post JN. Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. January 2019, 1862 (1): 107–117. PMID 30465885. doi:10.1016/j.bbagrm.2018.11.001可免费查阅. 
  30. ^ Margarit E, Coll MD, Oliva R, Gómez D, Soler A, Ballesta F. SRY gene transferred to the long arm of the X chromosome in a Y-positive XX true hermaphrodite. American Journal of Medical Genetics. January 2000, 90 (1): 25–28. PMID 10602113. doi:10.1002/(SICI)1096-8628(20000103)90:1<25::AID-AJMG5>3.0.CO;2-5. 
  31. ^ Zhou R, Bonneaud N, Yuan CX, de Santa Barbara P, Boizet B, Schomber T, Scherer G, Roeder RG, Poulat F, Berta P. SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Research. July 2002, 30 (14): 3245–3252. PMC 135763可免费查阅. PMID 12136106. doi:10.1093/nar/gkf443. 
  32. ^ Huang W, Lu N, Eberspaecher H, De Crombrugghe B. A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. The Journal of Biological Chemistry. December 2002, 277 (52): 50668–50675. PMID 12381733. doi:10.1074/jbc.M206544200可免费查阅. 
  33. ^ Yang Y, Gomez N, Infarinato N, Adam RC, Sribour M, Baek I, Laurin M, Fuchs E. The pioneer factor SOX9 competes for epigenetic factors to switch stem cell fates. Nature Cell Biology. August 2023, 25 (8): 1185–1195. PMC 10415178可免费查阅. PMID 37488435. doi:10.1038/s41556-023-01184-y可免费查阅. 
  34. ^ Xu X, Bass B, McKillop WM, Mailloux J, Liu T, Geremia NM, Hryciw T, Brown A. Sox9 knockout mice have improved recovery following stroke. Experimental Neurology. May 2018, 303: 59–71. PMID 29425963. doi:10.1016/j.expneurol.2018.02.001. 

外部链接


SOX9引用了美国国家医学图书馆提供的資料,这些資料属于公共领域


Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya