Ninomiya S, Narahara K, Tsuji K, Yokoyama Y, Ito S, Seino Y. Acampomelic campomelic syndrome and sex reversal associated with de novo t(12;17) translocation. American Journal of Medical Genetics. March 1995, 56 (1): 31–34. PMID 7747782. doi:10.1002/ajmg.1320560109.
Lefebvre V, de Crombrugghe B. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biology. March 1998, 16 (9): 529–540. PMID 9569122. doi:10.1016/S0945-053X(98)90065-8.
Harley VR. The Molecular Action of Testis-Determining Factors SRY and SOX9. The Genetics and Biology of Sex Determination. Novartis Foundation Symposia 244. 2002: 57–66; discussion 66–7, 79–85, 253–7. ISBN 9780470843468. PMID 11990798. doi:10.1002/0470868732.ch6.
Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanović M, Weissenbach J, Mansour S, Young ID, Goodfellow PN. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. December 1994, 372 (6506): 525–530. Bibcode:1994Natur.372..525F. PMID 7990924. S2CID 1472426. doi:10.1038/372525a0.
Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W, Scherer G. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. December 1994, 79 (6): 1111–1120. PMID 8001137. S2CID 24982682. doi:10.1016/0092-8674(94)90041-8.
Südbeck P, Schmitz ML, Baeuerle PA, Scherer G. Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nature Genetics. June 1996, 13 (2): 230–232. PMID 8640233. S2CID 22617889. doi:10.1038/ng0696-230.
Cameron FJ, Hageman RM, Cooke-Yarborough C, Kwok C, Goodwin LL, Sillence DO, Sinclair AH. A novel germ line mutation in SOX9 causes familial campomelic dysplasia and sex reversal. Human Molecular Genetics. October 1996, 5 (10): 1625–1630. PMID 8894698. doi:10.1093/hmg/5.10.1625.
Meyer J, Südbeck P, Held M, Wagner T, Schmitz ML, Bricarelli FD, Eggermont E, Friedrich U, Haas OA, Kobelt A, Leroy JG, Van Maldergem L, Michel E, Mitulla B, Pfeiffer RA, Schinzel A, Schmidt H, Scherer G. Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Human Molecular Genetics. January 1997, 6 (1): 91–98. PMID 9002675. doi:10.1093/hmg/6.1.91.
McDowall S, Argentaro A, Ranganathan S, Weller P, Mertin S, Mansour S, Tolmie J, Harley V. Functional and structural studies of wild type SOX9 and mutations causing campomelic dysplasia. The Journal of Biological Chemistry. August 1999, 274 (34): 24023–24030. PMID 10446171. doi:10.1074/jbc.274.34.24023.
Ninomiya S, Yokoyama Y, Teraoka M, Mori R, Inoue C, Yamashita S, Tamai H, Funato M, Seino Y. A novel mutation (296 del G) of the SOX90 gene in a patient with campomelic syndrome and sex reversal. Clinical Genetics. September 2000, 58 (3): 224–227. PMID 11076045. S2CID 28618271. doi:10.1034/j.1399-0004.2000.580310.x.
Preiss S, Argentaro A, Clayton A, John A, Jans DA, Ogata T, Nagai T, Barroso I, Schafer AJ, Harley VR. Compound effects of point mutations causing campomelic dysplasia/autosomal sex reversal upon SOX9 structure, nuclear transport, DNA binding, and transcriptional activation. The Journal of Biological Chemistry. July 2001, 276 (30): 27864–27872. PMID 11323423. doi:10.1074/jbc.M101278200.
^Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
^Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine.
^Tommerup N, Schempp W, Meinecke P, Pedersen S, Bolund L, Brandt C, Goodpasture C, Guldberg P, Held KR, Reinwein H. Assignment of an autosomal sex reversal locus (SRA1) and campomelic dysplasia (CMPD1) to 17q24.3-q25.1. Nature Genetics. June 1993, 4 (2): 170–174. PMID 8348155. S2CID 12263655. doi:10.1038/ng0693-170.
^ 11.011.1Bouma GJ, Albrecht KH, Washburn LL, Recknagel AK, Churchill GA, Eicher EM. Gonadal sex reversal in mutant Dax1 XY mice: a failure to upregulate Sox9 in pre-Sertoli cells. Development. July 2005, 132 (13): 3045–3054. PMID 15944188. doi:10.1242/dev.01890.
^Ambrozkiewicz MC, Schwark M, Kishimoto-Suga M, Borisova E, Hori K, Salazar-Lázaro A, Rusanova A, Altas B, Piepkorn L, Bessa P, Schaub T, Zhang X, Rabe T, Ripamonti S, Rosário M, Akiyama H, Jahn O, Kobayashi T, Hoshino M, Tarabykin V, Kawabe H. Polarity Acquisition in Cortical Neurons Is Driven by Synergistic Action of Sox9-Regulated Wwp1 and Wwp2 E3 Ubiquitin Ligases and Intronic miR-140. Neuron. December 2018, 100 (5): 1097–1115.e15. PMID 30392800. doi:10.1016/j.neuron.2018.10.008.
^Place E, Manning E, Kim DW, Kinjo A, Nakamura G and Ohyama K (2022) SHH and Notch regulate SOX9+ progenitors to govern arcuate POMC neurogenesis. Front. Neurosci. 16:855288. doi: 10.3389/fnins.2022.855288
^Vogel, Julia K.; Wegner, Michael PhD,*. Sox9 in the developing central nervous system: a jack of all trades?. Neural Regeneration Research 16(4):p 676-677, April 2021. | DOI: 10.4103/1673-5374.295327
^Ortega, Egle A., et al. “Sry-Independent Overexpression of Sox9 Supports Spermatogenesis and Fertility in the Mouse.” Biology of Reproduction, vol. 93, no. 6, 1 Dec. 2015, pp. 1–12, https://doi.org/10.1095/biolreprod.115.135400.
^Vidal, Valerie P.I., et al. “Sox9 induces testis development in XX transgenic mice.” Nature Genetics, vol. 28, July 2001, pp. 216–217, https://doi.org/10.1038/90046.
^Ortega, Egle A., et al. “Sry-Independent Overexpression of Sox9 Supports Spermatogenesis and Fertility in the Mouse.” Biology of Reproduction, vol. 93, no. 6, 1 Dec. 2015, pp. 1–12, https://doi.org/10.1095/biolreprod.115.135400.
^Vidal, Valerie P.I., et al. “Sox9 induces testis development in XX transgenic mice.” Nature Genetics, vol. 28, July 2001, pp. 216–217, https://doi.org/10.1038/90046.
^Benko S, Fantes JA, Amiel J, Kleinjan DJ, Thomas S, Ramsay J, Jamshidi N, Essafi A, Heaney S, Gordon CT, McBride D, Golzio C, Fisher M, Perry P, Abadie V, Ayuso C, Holder-Espinasse M, Kilpatrick N, Lees MM, Picard A, Temple IK, Thomas P, Vazquez MP, Vekemans M, Roest Crollius H, Hastie ND, Munnich A, Etchevers HC, Pelet A, Farlie PG, Fitzpatrick DR, Lyonnet S. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nature Genetics. March 2009, 41 (3): 359–364. PMID 19234473. S2CID 29933548. doi:10.1038/ng.329.
^ 24.024.1Nouri M, Massah S, Caradec J, Lubik AA, Li N, Truong S, Lee AR, Fazli L, Ramnarine VR, Lovnicki JM, Moore J, Wang M, Foo J, Gleave ME, Hollier BG, Nelson C, Collins C, Dong X, Buttyan R. Transient Sox9 Expression Facilitates Resistance to Androgen-Targeted Therapy in Prostate Cancer. Clinical Cancer Research. April 2020, 26 (7): 1678–1689. PMID 31919137. doi:10.1158/1078-0432.CCR-19-0098.
^Prévostel C, Blache P. The dose-dependent effect of SOX9 and its incidence in colorectal cancer. European Journal of Cancer. November 2017, 86: 150–157. PMID 28988015. doi:10.1016/j.ejca.2017.08.037.
^Govindaraj K, Hendriks J, Lidke DS, Karperien M, Post JN. Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. January 2019, 1862 (1): 107–117. PMID 30465885. doi:10.1016/j.bbagrm.2018.11.001.
^Huang W, Lu N, Eberspaecher H, De Crombrugghe B. A new long form of c-Maf cooperates with Sox9 to activate the type II collagen gene. The Journal of Biological Chemistry. December 2002, 277 (52): 50668–50675. PMID 12381733. doi:10.1074/jbc.M206544200.