Rough numberA k-rough number, as defined by Finch in 2001 and 2003, is a positive integer whose prime factors are all greater than or equal to k. k-roughness has alternately been defined as requiring all prime factors to strictly exceed k.[1] Examples (after Finch)
Powerrough numbersLike powersmooth numbers, we define "n-powerrough numbers" as the numbers whose prime factorization has for every (while the condition is for n-powersmooth numbers), e.g. every positive integer is 2-powerrough, 3-powerrough numbers are exactly the numbers not == 2 mod 4, 4-powerrough numbers are exactly the numbers neither == 2 mod 4 nor == 3, 6 mod 9, 5-powerrough numbers are exactly the numbers neither == 2, 4, 6 mod 8 nor == 3, 6 mod 9, etc. See also
Notes
References
The On-Line Encyclopedia of Integer Sequences (OEIS) lists p-rough numbers for small p:
|