This article contains dynamic lists that may never be able to satisfy particular standards for completeness. You can help by editing the page to add missing items, with references to reliable sources.
The following outline is provided as an overview of, and topical guide to, machine learning:
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory.[1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed".[2] ML involves the study and construction of algorithms that can learn from and make predictions on data.[3] These algorithms operate by building a model from a training set of example observations to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.
Popular online course by Andrew Ng, at Coursera. It uses GNU Octave. The course is a free version of Stanford University's actual course taught by Ng, see.stanford.edu/Course/CS229 available for free].
mloss is an academic database of open-source machine learning software.