In 1980, statistical approaches were explored and found to be more useful for many purposes than rule-based formal grammars. Discrete representations like word n-gram language models, with probabilities for discrete combinations of words, made significant advances.
In the 2000s, continuous representations for words, such as word embeddings, began to replace discrete representations.[11] Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning, and common relationships between pairs of words like plurality or gender.
Pure statistical models
In 1980, the first significant statistical language model was proposed, and during the decade IBM performed 'Shannon-style' experiments, in which potential sources for language modeling improvement were identified by observing and analyzing the performance of human subjects in predicting or correcting text.[12]
A word n-gram language model is a statistical model of language which calculates the probability of the next word in a sequence from a fixed size window of previous words. If one previous word is considered, it is a bigram model; if two words, a trigram model; if n − 1 words, an n-gram model.[13]
Special tokens are introduced to denote the start and end of a sentence and . To prevent a zero probability being assigned to unseen words, the probability of each seen word is slightly lowered to make room for the unseen words in a given corpus. To achieve this, various smoothing methods are used, from simple "add-one" smoothing (assigning a count of 1 to unseen n-grams, as an uninformative prior) to more sophisticated techniques, such as Good–Turing discounting or back-off models.
Maximum entropy language models encode the relationship between a word and the n-gram history using feature functions. The equation is
where is the partition function, is the parameter vector, and is the feature function. In the simplest case, the feature function is just an indicator of the presence of a certain n-gram. It is helpful to use a prior on or some form of regularization.
The log-bilinear model is another example of an exponential language model.
1-skip-2-grams for the text "the rain in Spain falls mainly on the plain"
Skip-gram language model is an attempt at overcoming the data sparsity problem that the preceding model (i.e. word n-gram language model) faced. Words represented in an embedding vector were not necessarily consecutive anymore, but could leave gaps that are skipped over (thus the name "skip-gram").[15]
Formally, a k-skip-n-gram is a length-n subsequence where the components occur at distance at most k from each other.
For example, in the input text:
the rain in Spain falls mainly on the plain
the set of 1-skip-2-grams includes all the bigrams (2-grams), and in addition the subsequences
the in, rain Spain, in falls, Spain mainly, falls on, mainly the, and on plain.
In skip-gram model, semantic relations between words are represented by linear combinations, capturing a form of compositionality. For example, in some such models, if v is the function that maps a word w to its n-d vector representation, then
where ≈ is made precise by stipulating that its right-hand side must be the nearest neighbor of the value of the left-hand side.[16][17]
Neural models
Recurrent neural network
Continuous representations or embeddings of words are produced in recurrent neural network-based language models (known also as continuous space language models).[18] Such continuous space embeddings help to alleviate the curse of dimensionality, which is the consequence of the number of possible sequences of words increasing exponentially with the size of the vocabulary, further causing a data sparsity problem. Neural networks avoid this problem by representing words as non-linear combinations of weights in a neural net.[19]
They consist of billions to trillions of parameters and operate as general-purpose sequence models, generating, summarizing, translating, and reasoning over text. LLMs represent a significant new technology in their ability to generalize across tasks with minimal task-specific supervision, enabling capabilities like conversational agents, code generation, knowledge retrieval, and automated reasoning that previously required bespoke systems.[25]
Reinforcement learning, particularly policy gradient algorithms, has been adapted to fine-tune LLMs for desired behaviors beyond raw next-token prediction.[28]Reinforcement learning from human feedback (RLHF) applies these methods to optimize a policy, the LLM's output distribution, against reward signals derived from human or automated preference judgments.[29] This has been critical for aligning model outputs with user expectations, improving factuality, reducing harmful responses, and enhancing task performance.
Mechanistic interpretability seeks to precisely identify and understand how individual neurons or circuits within LLMs produce specific behaviors or outputs.[30] By reverse-engineering model components at a granular level, researchers aim to detect and mitigate safety concerns such as emergent harmful behaviors, biases, deception, or unintended goal pursuit before deployment.[31]
Benchmark evaluations for LLMs have evolved from narrow linguistic assessments toward comprehensive, multi-task evaluations measuring reasoning, factual accuracy, alignment, and safety.[32][33]Hill climbing, iteratively optimizing models against benchmarks, has emerged as a dominant strategy, producing rapid incremental performance gains but raising concerns of overfitting to benchmarks rather than achieving genuine generalization or robust capability improvements.[34]
The convergence of large-scale supervised pretraining, transformer architectures, and reinforcement learning–based fine-tuning marks the current frontier of LLM technology.[20][35] This combined trajectory underpins the rapid progress in AI systems that deliver tangible benefits to end users: higher accuracy, greater adaptability, improved safety, and broader applicability across scientific, commercial, and creative domains.
Although sometimes matching human performance, it is not clear whether they are plausible cognitive models. At least for recurrent neural networks, it has been shown that they sometimes learn patterns that humans do not, but fail to learn patterns that humans typically do.[36]
Evaluation and benchmarks
Evaluation of the quality of language models is mostly done by comparison to human created sample benchmarks created from typical language-oriented tasks. Other, less established, quality tests examine the intrinsic character of a language model or compare two such models. Since language models are typically intended to be dynamic and to learn from data they see, some proposed models investigate the rate of learning, e.g., through inspection of learning curves.[37]
Various data sets have been developed for use in evaluating language processing systems.[38] These include:
^Andreas, Jacob, Andreas Vlachos, and Stephen Clark (2013). "Semantic parsing as machine translation"Archived 15 August 2020 at the Wayback Machine. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers).
^Ponte, Jay M.; Croft, W. Bruce (1998). A language modeling approach to information retrieval. Proceedings of the 21st ACM SIGIR Conference. Melbourne, Australia: ACM. pp. 275–281. doi:10.1145/290941.291008.
^Hiemstra, Djoerd (1998). A linguistically motivated probabilistically model of information retrieval. Proceedings of the 2nd European conference on Research and Advanced Technology for Digital Libraries. LNCS, Springer. pp. 569–584. doi:10.1007/3-540-49653-X_34.
^Chomsky, N. (September 1956). "Three models for the description of language". IRE Transactions on Information Theory. 2 (3): 113–124. doi:10.1109/TIT.1956.1056813. ISSN2168-2712.
^Jurafsky, Dan; Martin, James H. (7 January 2023). "N-gram Language Models". Speech and Language Processing(PDF) (3rd edition draft ed.). Retrieved 24 May 2022.
^Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Janvin, Christian (1 March 2003). "A neural probabilistic language model". The Journal of Machine Learning Research. 3: 1137–1155 – via ACM Digital Library.
^ abBommasani, Rishi; Hudson, Drew A.; Adeli, Ehsan; Altman, Russ; Arora, Simran; von Arx, Matthew; Bernstein, Michael S.; Bohg, Jeannette; Bosselut, Antoine; Brunskill, Emma (2021). "On the Opportunities and Risks of Foundation Models". arxiv. arXiv:2108.07258.
^Kaplan, Jared; McCandlish, Sam; Henighan, Tom; Brown, Tom B.; Chess, Benjamin; Child, Rewon; Gray, Scott; Radford, Alec; Wu, Jeffrey; Amodei, Dario (2020). "Scaling Laws for Neural Language Models". arxiv. arXiv:2001.08361.
^Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia (2017). "Attention is All you Need". arxiv. arXiv:1706.03762.
^Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". arxiv. arXiv:1810.04805.
^Christiano, Paul; Leike, Jan; Brown, Tom B.; Martic, Miljan; Legg, Shane; Amodei, Dario (2017). "Deep Reinforcement Learning from Human Preferences". arxiv. arXiv:1706.03741.
^Ouyang, Long; Wu, Jeff; Jiang, Xu; Almeida, Diogo; Wainwright, Carroll; Mishkin, Pamela; Zhang, Chong; Agarwal, Sandhini; Slama, Katarina; Ray, Alex (2022). "Training language models to follow instructions with human feedback". arxiv. arXiv:2203.02155.
^Wang, Alex; Singh, Amanpreet; Michael, Julian; Hill, Felix; Levy, Omer; Bowman, Samuel R. (2018). "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding". arxiv. arXiv:1804.07461.
^Karlgren, Jussi; Schutze, Hinrich (2015), "Evaluating Learning Language Representations", International Conference of the Cross-Language Evaluation Forum, Lecture Notes in Computer Science, Springer International Publishing, pp. 254–260, doi:10.1007/978-3-319-64206-2_8, ISBN978-3-319-64205-5
^Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina (10 October 2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". arXiv:1810.04805 [cs.CL].
^Aghaebrahimian, Ahmad (2017), "Quora Question Answer Dataset", Text, Speech, and Dialogue, Lecture Notes in Computer Science, vol. 10415, Springer International Publishing, pp. 66–73, doi:10.1007/978-3-319-64206-2_8, ISBN978-3-319-64205-5
^Sammons, V.G.Vinod Vydiswaran, Dan Roth, Mark; Vydiswaran, V.G.; Roth, Dan. "Recognizing Textual Entailment"(PDF). Archived from the original(PDF) on 9 August 2017. Retrieved 24 February 2019.{{cite web}}: CS1 maint: multiple names: authors list (link)
Jay M. Ponte; W. Bruce Croft (1998). "A Language Modeling Approach to Information Retrieval". Research and Development in Information Retrieval. pp. 275–281. CiteSeerX10.1.1.117.4237. doi:10.1145/290941.291008.
Fei Song; W. Bruce Croft (1999). "A General Language Model for Information Retrieval". Research and Development in Information Retrieval. pp. 279–280. CiteSeerX10.1.1.21.6467. doi:10.1145/319950.320022.