Isotopes of ruthenium (44 Ru)
Main isotopes[ 1]
Decay
96 Ru
5.54%
stable
97 Ru
synth
2.837 d
ε
97 Tc
98 Ru
1.87%
stable
99 Ru
12.8%
stable
100 Ru
12.6%
stable
101 Ru
17.1%
stable
102 Ru
31.6%
stable
103 Ru
synth
39.245 d
β−
103 Rh
104 Ru
18.6%
stable
106 Ru
synth
371.8 d
β−
106 Rh
Naturally occurring ruthenium (44 Ru) is composed of seven stable isotopes : 96, 98-102, 104 (of which the first and last may in the future be found radioactive ). Additionally, 27 synthetic radioactive isotopes have been discovered. Of these radioisotopes , the most stable are 106 Ru with a half-life of 371.8 days or 1.018 years, 103 Ru, with a half-life of 39.245 days, and 97 Ru with a half-life of 2.837 days.
The other known isotopes run from 87 Ru to 120 Ru, and most of these have half-lives that are less than five minutes, except 94 Ru (51.8 minutes), 95 Ru (1.607 hours), and 105 Ru (4.44 hours).
The primary decay mode before the most abundant isotope, 102 Ru, is electron capture to isotopes of technetium , and after beta emission to isotopes of rhodium . Double beta decay is the allowed mode for the two observationally stable isotopes: 96 Ru and 104 Ru.
Because of the volatility of ruthenium tetroxide (RuO4 ), ruthenium isotopes with relatively short half-life are considered the next most hazardous airborne isotopes, after iodine-131 , in case of release by a nuclear accident.[ 4] [ 5] [ 6] The two most important isotopes of ruthenium so released are those with the longest half-life: 103 Ru 106 Ru.[ 5]
Ruthenium-96
List of isotopes
Nuclide[ n 1]
Z
N
Isotopic mass (Da ) [ 7] [ n 2] [ n 3]
Half-life [ 1] [ n 4]
Decay mode [ 1] [ n 5]
Daughter isotope [ n 6]
Spin andparity [ 1] [ n 7] [ n 4]
Natural abundance (mole fraction)
Excitation energy[ n 4]
Normal proportion[ 1]
Range of variation
85 Ru
44
41
84.96712(54)#
1# ms [> 400 ns]
3/2−#
86 Ru
44
42
85.95731(43)#
50# ms [> 400 ns]
0+
87 Ru
44
43
86.95091(43)#
50# ms [> 1.5 μs]
1/2−#
88 Ru
44
44
87.94166(32)#
1.5(3) s
β+ (>96.4%)
88 Tc
0+
β+ , p (<3.6%)
87 Mo
89 Ru
44
45
88.937338(26)
1.32(3) s
β+ (96.7%)
89 Tc
(9/2+)
β+ , p (3.1%)
88 Mo
90 Ru
44
46
89.9303444(40)
11.7(9) s
β+
90 Tc
0+
91 Ru
44
47
90.9267415(24)
8.0(4) s
β+
91 Tc
(9/2+)
91m Ru[ n 8]
−340(500) keV
7.6(8) s
β+ (>99.9%)
91 Tc
(1/2−)
β+ , p (?%)
90 Mo
92 Ru
44
48
91.9202344(29)
3.65(5) min
β+
92 Tc
0+
92m Ru
2833.9(18) keV
100(8) ns
IT
92 Ru
(8+)
93 Ru
44
49
92.9171044(22)
59.7(6) s
β+
93 Tc
(9/2)+
93m1 Ru
734.40(10) keV
10.8(3) s
β+ (78.0%)
93 Tc
(1/2)−
IT (22.0%)
93 Ru
β+ , p (0.027%)
92 Mo
93m2 Ru
2082.5(9) keV
2.30(7) μs
IT
93 Ru
(21/2)+
94 Ru
44
50
93.9113429(34)
51.8(6) min
β+
94 Tc
0+
94m Ru
2644.1(4) keV
67.5(28) μs
IT
94 Ru
8+
95 Ru
44
51
94.910404(10)
1.607(4) h
β+
95 Tc
5/2+
96 Ru
44
52
95.90758891(18)
Observationally Stable [ n 9]
0+
0.0554(14)
97 Ru
44
53
96.9075458(30)
2.8370(14) d
β+
97 Tc
5/2+
98 Ru
44
54
97.9052867(69)
Stable
0+
0.0187(3)
99 Ru
44
55
98.90593028(37)
Stable
5/2+
0.1276(14)
100 Ru
44
56
99.90421046(37)
Stable
0+
0.1260(7)
101 Ru[ n 10]
44
57
100.90557309(44)
Stable
5/2+
0.1706(2)
101m Ru
527.56(10) keV
17.5(4) μs
IT
101 Ru
11/2−
102 Ru[ n 10]
44
58
101.90434031(45)
Stable
0+
0.3155(14)
103 Ru[ n 10]
44
59
102.90631485(47)
39.245(8) d
β−
103 Rh
3/2+
103m Ru
238.2(7) keV
1.69(7) ms
IT
103 Ru
11/2−
104 Ru[ n 10]
44
60
103.9054253(27)
Observationally Stable [ n 11]
0+
0.1862(27)
105 Ru[ n 10]
44
61
104.9077455(27)
4.439(11) h
β−
105 Rh
3/2+
105m Ru
20.606(14) keV
340(15) ns
IT
105 Ru
5/2+
106 Ru[ n 10]
44
62
105.9073282(58)
371.8(18) d
β−
106 Rh
0+
107 Ru
44
63
106.9099698(93)
3.75(5) min
β−
107 Rh
(5/2)+
108 Ru
44
64
107.9101858(93)
4.55(5) min
β−
108 Rh
0+
109 Ru
44
65
108.9133237(96)
34.4(2) s
β−
109 Rh
(5/2+)
109m Ru
96.14(15) keV
680(30) ns
IT
109 Ru
(5/2−)
110 Ru
44
66
109.9140385(96)
12.04(17) s
β−
110 Rh
0+
111 Ru
44
67
110.917568(10)
2.12(7) s
β−
111 Rh
5/2+
112 Ru
44
68
111.918807(10)
1.75(7) s
β−
112 Rh
0+
113 Ru
44
69
112.922847(41)
0.80(5) s
β−
113 Rh
(1/2+)
113m Ru
131(33) keV
510(30) ms
β− (?%)
113 Rh
(7/2−)
IT (?%)
113 Ru
114 Ru
44
70
113.9246144(38)
0.54(3) s
β−
114 Rh
0+
115 Ru
44
71
114.929033(27)
318(19) ms
β−
115 Rh
(1/2+)
115m Ru
82(6) keV
76(6) ms
β− (?%)
115 Rh
(7/2−)
IT (?%)
115 Ru
116 Ru
44
72
115.9312192(40)
204(6) ms
β−
116 Rh
0+
117 Ru
44
73
116.93614(47)
151(3) ms
β−
117 Rh
3/2+#
117m Ru
185.0(4) keV
2.49(6) μs
IT
117 Ru
7/2−#
118 Ru
44
74
117.93881(22)#
99(3) ms
β−
118 Rh
0+
119 Ru
44
75
118.94409(32)#
69.5(20) ms
β−
119 Rh
3/2+#
119m Ru
227.1(7) keV
384(22) ns
IT
119 Ru
120 Ru
44
76
119.94662(43)#
45(2) ms
β−
120 Rh
0+
121 Ru
44
77
120.95210(43)#
29(2) ms
β−
121 Rh
3/2+#
122 Ru
44
78
121.95515(54)#
25(1) ms
β−
122 Rh
0+
123 Ru
44
79
122.96076(54)#
19(2) ms
β−
123 Rh
3/2+#
124 Ru
44
80
123.96394(64)#
15(3) ms
β−
124 Rh
0+
125 Ru
44
81
124.96954(32)#
12# ms [> 550 ns]
3/2+#
This table header & footer:
^ m Ru – Excited nuclear isomer .
^ ( ) – Uncertainty (1σ ) is given in concise form in parentheses after the corresponding last digits.
^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
^
Modes of decay:
^ Bold symbol as daughter – Daughter product is stable.
^ ( ) spin value – Indicates spin with weak assignment arguments.
^ Order of ground state and isomer is uncertain.
^ Believed to undergo β+ β+ decay to 96 Mo with a half-life over 8×1019 years
^ a b c d e f Fission product
^ Believed to undergo β− β− decay to 104 Pd
Alleged ruthenium-106 leak
In September 2017 an estimated amount of 100 to 300 TBq (0.3 to 1 g) of 106 Ru was released in Russia, probably in the Ural region. It was, after ruling out release from a reentering satellite, concluded that the source was either in nuclear fuel cycle facilities or radioactive source production. In France levels up to 0.036mBq/m3 of air were measured. It was estimated that for distances of the order of a few tens of kilometres, contamination levels may have exceeded the limits for non-dairy foodstuffs.[ 8]
Asteroid that ended the Cretaceous period
The ratios of the amounts of ruthenium isotopes were used to determine the age of the asteroid which exterminated the dinosaurs at the end of the Cretaceous period , and to show that it originated beyond Jupiter in the outer solar system.[ 9]
See also
Daughter products other than ruthenium
References
^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3) 030001. doi :10.1088/1674-1137/abddae .
^ "Standard Atomic Weights: Ruthenium" . CIAAW . 1983.
^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi :10.1515/pac-2019-0603 . ISSN 1365-3075 .
^ Ronneau, C., Cara, J., & Rimski-Korsakov, A. (1995). Oxidation-enhanced emission of ruthenium from nuclear fuel . Journal of Environmental Radioactivity, 26(1), 63-70.
^ a b Backman, U., Lipponen, M., Auvinen, A., Jokiniemi, J., & Zilliacus, R. (2004). Ruthenium behaviour in severe nuclear accident conditions . Final report (No. NKS–100). Nordisk Kernesikkerhedsforskning.
^ Beuzet, E., Lamy, J. S., Perron, H., Simoni, E., & Ducros, G. (2012). Ruthenium release modelling in air and steam atmospheres under severe accident conditions using the MAAP4 code [dead link ] . Nuclear Engineering and Design, 246, 157-162.
^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C . 45 (3) 030003. doi :10.1088/1674-1137/abddaf .
^ [1] Detection of ruthenium 106 in France and in Europe, IRSN France (9 Nov 2017)
^ Dunham, Will (15 August 2024). "Asteroid that doomed the dinosaurs originated beyond Jupiter" . The Globe and Mail . Retrieved 8 July 2025 . ruthenium shows distinct isotopic compositions between inner and outer solar system materials
Group
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Period
Hydrogen and alkali metals
Alkaline earth metals
Pnictogens
Chalcogens
Halogens
Noble gases
①
1
2
②
3
4
5
6
7
8
9
10
③
11
12
13
14
15
16
17
18
④
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
⑤
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
⑥
55
56
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
⑦
87
88
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
⑧
119
120
57
58
59
60
61
62
63
64
65
66
67
68
69
70
89
90
91
92
93
94
95
96
97
98
99
100
101
102