Study of triangles in other spaces than the Euclidean plane
Ordinary trigonometry studies triangles in the Euclidean plane
R
2
{\displaystyle \mathbb {R} ^{2}}
. There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers , for example right-angled triangle definitions , unit circle definitions , series definitions [broken anchor ] , definitions via differential equations [broken anchor ] , and definitions using functional equations . Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space . A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n -simplices .
Trigonometry
Higher dimensions
Trigonometric functions
Other
See also
References
^ Thompson, K.; Dray, T. (2000), "Taxicab angles and trigonometry" (PDF) , Pi Mu Epsilon Journal , 11 (2): 87– 96, arXiv :1101.2917 , Bibcode :2011arXiv1101.2917T , archived from the original (PDF) on 2012-02-23, retrieved 2009-05-18
^ Herranz, Francisco J.; Ortega, Ramón; Santander, Mariano (2000), "Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry", Journal of Physics A , 33 (24): 4525– 4551, arXiv :math-ph/9910041 , Bibcode :2000JPhA...33.4525H , doi :10.1088/0305-4470/33/24/309 , MR 1768742 , S2CID 15313035
^ Liu, Honghai; Coghill, George M. (2005), "Fuzzy Qualitative Trigonometry", 2005 IEEE International Conference on Systems, Man and Cybernetics (PDF) , vol. 2, pp. 1291– 1296, archived from the original (PDF) on 2011-07-25
^ Gustafson, K. E. (1999), "A computational trigonometry, and related contributions by Russians Kantorovich, Krein, Kaporin" , Вычислительные технологии , 4 (3): 73– 83
^ Karpenkov, Oleg (2008), "Elementary notions of lattice trigonometry", Mathematica Scandinavica , 102 (2): 161– 205, arXiv :math/0604129 , doi :10.7146/math.scand.a-15058 , MR 2437186 , S2CID 49911437
^ Aslaksen, Helmer; Huynh, Hsueh-Ling (1997), "Laws of trigonometry in symmetric spaces", Geometry from the Pacific Rim (Singapore, 1994) , Berlin: de Gruyter, pp. 23– 36, CiteSeerX 10.1.1.160.1580 , MR 1468236
^ Leuzinger, Enrico (1992), "On the trigonometry of symmetric spaces", Commentarii Mathematici Helvetici , 67 (2): 252– 286, doi :10.1007/BF02566499 , MR 1161284 , S2CID 123684622
^ Masala, G. (1999), "Regular triangles and isoclinic triangles in the Grassmann manifolds G 2 (R N ) ", Rendiconti del Seminario Matematico Università e Politecnico di Torino , 57 (2): 91– 104, MR 1974445
^ Richardson, G. (1902-03-01). "The Trigonometry of the Tetrahedron" . The Mathematical Gazette . 2 (32): 149– 158. doi :10.2307/3603090 . JSTOR 3603090 . S2CID 125115660 .
^ West, Bruce J.; Bologna, Mauro; Grigolini, Paolo (2003), Physics of fractal operators , Institute for Nonlinear Science, New York: Springer-Verlag, p. 101, doi :10.1007/978-0-387-21746-8 , ISBN 0-387-95554-2 , MR 1988873
^ Harkin, Anthony A.; Harkin, Joseph B. (2004), "Geometry of generalized complex numbers", Mathematics Magazine , 77 (2): 118– 129, doi :10.1080/0025570X.2004.11953236 , JSTOR 3219099 , MR 1573734 , S2CID 7837108
^ Yamaleev, Robert M. (2005), "Complex algebras on n -order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics" (PDF) , Advances in Applied Clifford Algebras , 15 (1): 123– 150, doi :10.1007/s00006-005-0007-y , MR 2236628 , S2CID 121144869 , archived from the original (PDF) on 2011-07-22
^ Antippa, Adel F. (2003), "The combinatorial structure of trigonometry" (PDF) , International Journal of Mathematics and Mathematical Sciences , 2003 (8): 475– 500, doi :10.1155/S0161171203106230 , MR 1967890