Mathematical functions
The lemniscate sine (red) and lemniscate cosine (purple) applied to a real argument, in comparison with the trigonometric sine y = sin(πx /ϖ ) (pale dashed red).
In mathematics , the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli . They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss , among others.[ 1]
The lemniscate sine and lemniscate cosine functions, usually written with the symbols sl and cl (sometimes the symbols sinlem and coslem or sin lemn and cos lemn are used instead),[ 2] are analogous to the trigonometric functions sine and cosine. While the trigonometric sine relates the arc length to the chord length in a unit-diameter circle
x
2
+
y
2
=
x
,
{\displaystyle x^{2}+y^{2}=x,}
[ 3] the lemniscate sine relates the arc length to the chord length of a lemniscate
(
x
2
+
y
2
)
2
=
x
2
−
y
2
.
{\displaystyle {\bigl (}x^{2}+y^{2}{\bigr )}{}^{2}=x^{2}-y^{2}.}
The lemniscate functions have periods related to a number
ϖ
=
{\displaystyle \varpi =}
2.622057... called the lemniscate constant , the ratio of a lemniscate's perimeter to its diameter. This number is a quartic analog of the (quadratic )
π
=
{\displaystyle \pi =}
3.141592... , ratio of perimeter to diameter of a circle .
As complex functions , sl and cl have a square period lattice (a multiple of the Gaussian integers ) with fundamental periods
{
(
1
+
i
)
ϖ
,
(
1
−
i
)
ϖ
}
,
{\displaystyle \{(1+i)\varpi ,(1-i)\varpi \},}
[ 4] and are a special case of two Jacobi elliptic functions on that lattice,
sl
z
=
sn
(
z
;
−
1
)
,
{\displaystyle \operatorname {sl} z=\operatorname {sn} (z;-1),}
cl
z
=
cd
(
z
;
−
1
)
{\displaystyle \operatorname {cl} z=\operatorname {cd} (z;-1)}
.
Similarly, the hyperbolic lemniscate sine slh and hyperbolic lemniscate cosine clh have a square period lattice with fundamental periods
{
2
ϖ
,
2
ϖ
i
}
.
{\displaystyle {\bigl \{}{\sqrt {2}}\varpi ,{\sqrt {2}}\varpi i{\bigr \}}.}
The lemniscate functions and the hyperbolic lemniscate functions are related to the Weierstrass elliptic function
℘
(
z
;
a
,
0
)
{\displaystyle \wp (z;a,0)}
.
Lemniscate sine and cosine functions
Definitions
The lemniscate functions sl and cl can be defined as the solution to the initial value problem :[ 5]
d
d
z
sl
z
=
(
1
+
sl
2
z
)
cl
z
,
d
d
z
cl
z
=
−
(
1
+
cl
2
z
)
sl
z
,
sl
0
=
0
,
cl
0
=
1
,
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {sl} z={\bigl (}1+\operatorname {sl} ^{2}z{\bigr )}\operatorname {cl} z,\ {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {cl} z=-{\bigl (}1+\operatorname {cl} ^{2}z{\bigr )}\operatorname {sl} z,\ \operatorname {sl} 0=0,\ \operatorname {cl} 0=1,}
or equivalently as the inverses of an elliptic integral , the Schwarz–Christoffel map from the complex unit disk to a square with corners
{
1
2
ϖ
,
1
2
ϖ
i
,
−
1
2
ϖ
,
−
1
2
ϖ
i
}
:
{\displaystyle {\big \{}{\tfrac {1}{2}}\varpi ,{\tfrac {1}{2}}\varpi i,-{\tfrac {1}{2}}\varpi ,-{\tfrac {1}{2}}\varpi i{\big \}}\colon }
[ 6]
z
=
∫
0
sl
z
d
t
1
−
t
4
=
∫
cl
z
1
d
t
1
−
t
4
.
{\displaystyle z=\int _{0}^{\operatorname {sl} z}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=\int _{\operatorname {cl} z}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}.}
Beyond that square, the functions can be extended to the complex plane via analytic continuation by successive reflections .
By comparison, the circular sine and cosine can be defined as the solution to the initial value problem:
d
d
z
sin
z
=
cos
z
,
d
d
z
cos
z
=
−
sin
z
,
sin
0
=
0
,
cos
0
=
1
,
{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\sin z=\cos z,\ {\frac {\mathrm {d} }{\mathrm {d} z}}\cos z=-\sin z,\ \sin 0=0,\ \cos 0=1,}
or as inverses of a map from the upper half-plane to a half-infinite strip with real part between
−
1
2
π
,
1
2
π
{\displaystyle -{\tfrac {1}{2}}\pi ,{\tfrac {1}{2}}\pi }
and positive imaginary part:
z
=
∫
0
sin
z
d
t
1
−
t
2
=
∫
cos
z
1
d
t
1
−
t
2
.
{\displaystyle z=\int _{0}^{\sin z}{\frac {\mathrm {d} t}{\sqrt {1-t^{2}}}}=\int _{\cos z}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{2}}}}.}
Relation to the lemniscate constant
The lemniscate sine function and hyperbolic lemniscate sine functions are defined as inverses of elliptic integrals. The complete integrals are related to the lemniscate constant ϖ .
The lemniscate functions have minimal real period
2
ϖ
{\displaystyle 2\varpi }
, minimal imaginary period
2
ϖ
i
{\displaystyle 2\varpi i}
and fundamental complex periods
(
1
+
i
)
ϖ
{\displaystyle (1+i)\varpi }
and
(
1
−
i
)
ϖ
{\displaystyle (1-i)\varpi }
for a constant
ϖ
{\displaystyle \varpi }
called the lemniscate constant ,[ 7]
ϖ
=
2
∫
0
1
d
t
1
−
t
4
=
2.62205
…
{\displaystyle \varpi =2\int _{0}^{1}{\frac {\mathrm {d} t}{\sqrt {1-t^{4}}}}=2.62205\ldots }
The lemniscate functions satisfy the basic relation
cl
z
=
sl
(
1
2
ϖ
−
z
)
,
{\displaystyle \operatorname {cl} z={\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\varpi -z{\bigr )},}
analogous to the relation
cos
z
=
sin
(
1
2
π
−
z
)
.
{\displaystyle \cos z={\sin }{\bigl (}{\tfrac {1}{2}}\pi -z{\bigr )}.}
The lemniscate constant
ϖ
{\displaystyle \varpi }
is a close analog of the circle constant
π
{\displaystyle \pi }
, and many identities involving
π
{\displaystyle \pi }
have analogues involving
ϖ
{\displaystyle \varpi }
, as identities involving the trigonometric functions have analogues involving the lemniscate functions. For example, Viète's formula for
π
{\displaystyle \pi }
can be written:
2
π
=
1
2
⋅
1
2
+
1
2
1
2
⋅
1
2
+
1
2
1
2
+
1
2
1
2
⋯
{\displaystyle {\frac {2}{\pi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\sqrt {\frac {1}{2}}}}}}}\cdots }
An analogous formula for
ϖ
{\displaystyle \varpi }
is:[ 8]
2
ϖ
=
1
2
⋅
1
2
+
1
2
/
1
2
⋅
1
2
+
1
2
/
1
2
+
1
2
/
1
2
⋯
{\displaystyle {\frac {2}{\varpi }}={\sqrt {\frac {1}{2}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}\cdot {\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\Bigg /}\!{\sqrt {{\frac {1}{2}}+{\frac {1}{2}}{\bigg /}\!{\sqrt {\frac {1}{2}}}}}}}\cdots }
The Machin formula for
π
{\displaystyle \pi }
is
1
4
π
=
4
arctan
1
5
−
arctan
1
239
,
{\textstyle {\tfrac {1}{4}}\pi =4\arctan {\tfrac {1}{5}}-\arctan {\tfrac {1}{239}},}
and several similar formulas for
π
{\displaystyle \pi }
can be developed using trigonometric angle sum identities, e.g. Euler's formula
1
4
π
=
arctan
1
2
+
arctan
1
3
{\textstyle {\tfrac {1}{4}}\pi =\arctan {\tfrac {1}{2}}+\arctan {\tfrac {1}{3}}}
. Analogous formulas can be developed for
ϖ
{\displaystyle \varpi }
, including the following found by Gauss:
1
2
ϖ
=
2
arcsl
1
2
+
arcsl
7
23
.
{\displaystyle {\tfrac {1}{2}}\varpi =2\operatorname {arcsl} {\tfrac {1}{2}}+\operatorname {arcsl} {\tfrac {7}{23}}.}
[ 9]
The lemniscate and circle constants were found by Gauss to be related to each-other by the arithmetic-geometric mean
M
{\displaystyle M}
:[ 10]
π
ϖ
=
M
(
1
,
2
)
{\displaystyle {\frac {\pi }{\varpi }}=M{\left(1,{\sqrt {2}}\!~\right)}}
Argument identities
Zeros, poles and symmetries
sl
{\displaystyle \operatorname {sl} }
in the complex plane.[ 11] In the picture, it can be seen that the fundamental periods
(
1
+
i
)
ϖ
{\displaystyle (1+i)\varpi }
and
(
1
−
i
)
ϖ
{\displaystyle (1-i)\varpi }
are "minimal" in the sense that they have the smallest absolute value of all periods whose real part is non-negative.
The lemniscate functions cl and sl are even and odd functions , respectively,
cl
(
−
z
)
=
cl
z
sl
(
−
z
)
=
−
sl
z
{\displaystyle {\begin{aligned}\operatorname {cl} (-z)&=\operatorname {cl} z\\[6mu]\operatorname {sl} (-z)&=-\operatorname {sl} z\end{aligned}}}
At translations of
1
2
ϖ
,
{\displaystyle {\tfrac {1}{2}}\varpi ,}
cl and sl are exchanged, and at translations of
1
2
i
ϖ
{\displaystyle {\tfrac {1}{2}}i\varpi }
they are additionally rotated and reciprocated :[ 12]
cl
(
z
±
1
2
ϖ
)
=
∓
sl
z
,
cl
(
z
±
1
2
i
ϖ
)
=
∓
i
sl
z
sl
(
z
±
1
2
ϖ
)
=
±
cl
z
,
sl
(
z
±
1
2
i
ϖ
)
=
±
i
cl
z
{\displaystyle {\begin{aligned}{\operatorname {cl} }{\bigl (}z\pm {\tfrac {1}{2}}\varpi {\bigr )}&=\mp \operatorname {sl} z,&{\operatorname {cl} }{\bigl (}z\pm {\tfrac {1}{2}}i\varpi {\bigr )}&={\frac {\mp i}{\operatorname {sl} z}}\\[6mu]{\operatorname {sl} }{\bigl (}z\pm {\tfrac {1}{2}}\varpi {\bigr )}&=\pm \operatorname {cl} z,&{\operatorname {sl} }{\bigl (}z\pm {\tfrac {1}{2}}i\varpi {\bigr )}&={\frac {\pm i}{\operatorname {cl} z}}\end{aligned}}}
Doubling these to translations by a unit -Gaussian-integer multiple of
ϖ
{\displaystyle \varpi }
(that is,
±
ϖ
{\displaystyle \pm \varpi }
or
±
i
ϖ
{\displaystyle \pm i\varpi }
), negates each function, an involution :
cl
(
z
+
ϖ
)
=
cl
(
z
+
i
ϖ
)
=
−
cl
z
sl
(
z
+
ϖ
)
=
sl
(
z
+
i
ϖ
)
=
−
sl
z
{\displaystyle {\begin{aligned}\operatorname {cl} (z+\varpi )&=\operatorname {cl} (z+i\varpi )=-\operatorname {cl} z\\[4mu]\operatorname {sl} (z+\varpi )&=\operatorname {sl} (z+i\varpi )=-\operatorname {sl} z\end{aligned}}}
As a result, both functions are invariant under translation by an even-Gaussian-integer multiple of
ϖ
{\displaystyle \varpi }
.[ 13] That is, a displacement
(
a
+
b
i
)
ϖ
,
{\displaystyle (a+bi)\varpi ,}
with
a
+
b
=
2
k
{\displaystyle a+b=2k}
for integers
a
{\displaystyle a}
,
b
{\displaystyle b}
, and
k
{\displaystyle k}
.
cl
(
z
+
(
1
+
i
)
ϖ
)
=
cl
(
z
+
(
1
−
i
)
ϖ
)
=
cl
z
sl
(
z
+
(
1
+
i
)
ϖ
)
=
sl
(
z
+
(
1
−
i
)
ϖ
)
=
sl
z
{\displaystyle {\begin{aligned}{\operatorname {cl} }{\bigl (}z+(1+i)\varpi {\bigr )}&={\operatorname {cl} }{\bigl (}z+(1-i)\varpi {\bigr )}=\operatorname {cl} z\\[4mu]{\operatorname {sl} }{\bigl (}z+(1+i)\varpi {\bigr )}&={\operatorname {sl} }{\bigl (}z+(1-i)\varpi {\bigr )}=\operatorname {sl} z\end{aligned}}}
This makes them elliptic functions (doubly periodic meromorphic functions in the complex plane) with a diagonal square period lattice of fundamental periods
(
1
+
i
)
ϖ
{\displaystyle (1+i)\varpi }
and
(
1
−
i
)
ϖ
{\displaystyle (1-i)\varpi }
.[ 14] Elliptic functions with a square period lattice are more symmetrical than arbitrary elliptic functions, following the symmetries of the square.
Reflections and quarter-turn rotations of lemniscate function arguments have simple expressions:
cl
z
¯
=
cl
z
¯
sl
z
¯
=
sl
z
¯
cl
i
z
=
1
cl
z
sl
i
z
=
i
sl
z
{\displaystyle {\begin{aligned}\operatorname {cl} {\bar {z}}&={\overline {\operatorname {cl} z}}\\[6mu]\operatorname {sl} {\bar {z}}&={\overline {\operatorname {sl} z}}\\[4mu]\operatorname {cl} iz&={\frac {1}{\operatorname {cl} z}}\\[6mu]\operatorname {sl} iz&=i\operatorname {sl} z\end{aligned}}}
The sl function has simple zeros at Gaussian integer multiples of
ϖ
{\displaystyle \varpi }
, complex numbers of the form
a
ϖ
+
b
ϖ
i
{\displaystyle a\varpi +b\varpi i}
for integers
a
{\displaystyle a}
and
b
{\displaystyle b}
. It has simple poles at Gaussian half-integer multiples of
ϖ
{\displaystyle \varpi }
, complex numbers of the form
(
a
+
1
2
)
ϖ
+
(
b
+
1
2
)
ϖ
i
{\displaystyle {\bigl (}a+{\tfrac {1}{2}}{\bigr )}\varpi +{\bigl (}b+{\tfrac {1}{2}}{\bigr )}\varpi i}
, with residues
(
−
1
)
a
−
b
+
1
i
{\displaystyle (-1)^{a-b+1}i}
. The cl function is reflected and offset from the sl function,
cl
z
=
sl
(
1
2
ϖ
−
z
)
{\displaystyle \operatorname {cl} z={\operatorname {sl} }{\bigl (}{\tfrac {1}{2}}\varpi -z{\bigr )}}
. It has zeros for arguments
(
a
+
1
2
)
ϖ
+
b
ϖ
i
{\displaystyle {\bigl (}a+{\tfrac {1}{2}}{\bigr )}\varpi +b\varpi i}
and poles for arguments
a
ϖ
+
(
b
+
1
2
)
ϖ
i
,
{\displaystyle a\varpi +{\bigl (}b+{\tfrac {1}{2}}{\bigr )}\varpi i,}
with residues
(
−
1
)
a
−
b
i
.
{\displaystyle (-1)^{a-b}i.}
Also
sl
z
=
sl
w
↔
z
=
(
−
1
)
m
+
n
w
+
(
m
+
n
i
)
ϖ
{\displaystyle \operatorname {sl} z=\operatorname {sl} w\leftrightarrow z=(-1)^{m+n}w+(m+ni)\varpi }
for some
m
,
n
∈
Z
{\displaystyle m,n\in \mathbb {Z} }
and
sl
(
(
1
±
i
)
z
)
=
(
1
±
i
)
sl
z
sl
′
z
.
{\displaystyle \operatorname {sl} ((1\pm i)z)=(1\pm i){\frac {\operatorname {sl} z}{\operatorname {sl} 'z}}.}
The last formula is a special case of complex multiplication . Analogous formulas can be given for
sl
(
(
n
+
m
i
)
z
)
{\displaystyle \operatorname {sl} ((n+mi)z)}
where
n
+
m
i
{\displaystyle n+mi}
is any Gaussian integer – the function
sl
{\displaystyle \operatorname {sl} }
has complex multiplication by
Z
[
i
]
{\displaystyle \mathbb {Z} [i]}
.[ 15]
There are also infinite series reflecting the distribution of the zeros and poles of sl :[ 16] [ 17]
1
sl
z
=
∑
(
n
,
k
)
∈
Z
2
(
−
1
)
n
+
k
z
+
n
ϖ
+
k
ϖ
i
{\displaystyle {\frac {1}{\operatorname {sl} z}}=\sum _{(n,k)\in \mathbb {Z} ^{2}}{\frac {(-1)^{n+k}}{z+n\varpi +k\varpi i}}}
sl
z
=
−
i
∑
(
n
,
k
)
∈
Z
2
(
−
1
)
n
+
k
z
+
(
n
+
1
/
2
)
ϖ
+
(
k
+
1
/
2
)
ϖ
i
.
{\displaystyle \operatorname {sl} z=-i\sum _{(n,k)\in \mathbb {Z} ^{2}}{\frac {(-1)^{n+k}}{z+(n+1/2)\varpi +(k+1/2)\varpi i}}.}
Pythagorean-like identity
Curves x ² ⊕ y ² = a for various values of a . Negative a in green, positive a in blue, a = ±1 in red, a = ∞ in black.
The lemniscate functions satisfy a Pythagorean -like identity:
c
l
2
z
+
s
l
2
z
+
c
l
2
z
s
l
2
z
=
1
{\displaystyle \operatorname {cl^{2}} z+\operatorname {sl^{2}} z+\operatorname {cl^{2}} z\,\operatorname {sl^{2}} z=1}
As a result, the parametric equation
(
x
,
y
)
=
(
cl
t
,
sl
t
)
{\displaystyle (x,y)=(\operatorname {cl} t,\operatorname {sl} t)}
parametrizes the quartic curve
x
2
+
y
2
+
x
2
y
2
=
1.
{\displaystyle x^{2}+y^{2}+x^{2}y^{2}=1.}
This identity can alternately be rewritten:[ 18]
(
1
+
c
l
2
z
)
(
1
+
s
l
2
z
)
=
2
{\displaystyle {\bigl (}1+\operatorname {cl^{2}} z{\bigr )}{\bigl (}1+\operatorname {sl^{2}} z{\bigr )}=2}
c
l
2
z
=
1
−
s
l
2
z
1
+
s
l
2
z
,
s
l
2
z
=
1
−
c
l
2
z
1
+
c
l
2
z
{\displaystyle \operatorname {cl^{2}} z={\frac {1-\operatorname {sl^{2}} z}{1+\operatorname {sl^{2}} z}},\quad \operatorname {sl^{2}} z={\frac {1-\operatorname {cl^{2}} z}{1+\operatorname {cl^{2}} z}}}
Defining a tangent-sum operator as
a
⊕
b
:=
tan
(
arctan
a
+
arctan
b
)
=
a
+
b
1
−
a
b
,
{\displaystyle a\oplus b\mathrel {:=} \tan(\arctan a+\arctan b)={\frac {a+b}{1-ab}},}
gives:
c
l
2
z
⊕
s
l
2
z
=
1.
{\displaystyle \operatorname {cl^{2}} z\oplus \operatorname {sl^{2}} z=1.}
The functions
cl
~
{\displaystyle {\tilde {\operatorname {cl} }}}
and
sl
~
{\displaystyle {\tilde {\operatorname {sl} }}}
satisfy another Pythagorean-like identity:
(
∫
0
x
cl
~
t
d
t
)
2
+
(
1
−
∫
0
x
sl
~
t
d
t
)
2
=
1.
{\displaystyle \left(\int _{0}^{x}{\tilde {\operatorname {cl} }}\,t\,\mathrm {d} t\right)^{2}+\left(1-\int _{0}^{x}{\tilde {\operatorname {sl} }}\,t\,\mathrm {d} t\right)^{2}=1.}
Derivatives and integrals
The derivatives are as follows:
d
d
z
cl
z
=
c
l
′
z
=
−
(
1
+
c
l
2
z
)
sl
z
=
−
2
sl
z
sl
2
z
+
1
c
l
′
2
z
=
1
−
c
l
4
z
d
d
z
sl
z
=
s
l
′
z
=
(
1
+
s
l
2
z
)
cl
z
=
2
cl
z
cl
2
z
+
1
s
l
′
2
z
=
1
−
s
l
4
z
{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {cl} z=\operatorname {cl'} z&=-{\bigl (}1+\operatorname {cl^{2}} z{\bigr )}\operatorname {sl} z=-{\frac {2\operatorname {sl} z}{\operatorname {sl} ^{2}z+1}}\\\operatorname {cl'^{2}} z&=1-\operatorname {cl^{4}} z\\[5mu]{\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {sl} z=\operatorname {sl'} z&={\bigl (}1+\operatorname {sl^{2}} z{\bigr )}\operatorname {cl} z={\frac {2\operatorname {cl} z}{\operatorname {cl} ^{2}z+1}}\\\operatorname {sl'^{2}} z&=1-\operatorname {sl^{4}} z\end{aligned}}}
d
d
z
cl
~
z
=
−
2
sl
~
z
cl
z
−
sl
~
z
cl
z
d
d
z
sl
~
z
=
2
cl
~
z
cl
z
−
cl
~
z
cl
z
{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} z}}\,{\tilde {\operatorname {cl} }}\,z&=-2\,{\tilde {\operatorname {sl} }}\,z\,\operatorname {cl} z-{\frac {{\tilde {\operatorname {sl} }}\,z}{\operatorname {cl} z}}\\{\frac {\mathrm {d} }{\mathrm {d} z}}\,{\tilde {\operatorname {sl} }}\,z&=2\,{\tilde {\operatorname {cl} }}\,z\,\operatorname {cl} z-{\frac {{\tilde {\operatorname {cl} }}\,z}{\operatorname {cl} z}}\end{aligned}}}
The second derivatives of lemniscate sine and lemniscate cosine are their negative duplicated cubes:
d
2
d
z
2
cl
z
=
−
2
c
l
3
z
{\displaystyle {\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\operatorname {cl} z=-2\operatorname {cl^{3}} z}
d
2
d
z
2
sl
z
=
−
2
s
l
3
z
{\displaystyle {\frac {\mathrm {d} ^{2}}{\mathrm {d} z^{2}}}\operatorname {sl} z=-2\operatorname {sl^{3}} z}
The lemniscate functions can be integrated using the inverse tangent function:
∫
cl
z
d
z
=
arctan
sl
z
+
C
∫
sl
z
d
z
=
−
arctan
cl
z
+
C
∫
cl
~
z
d
z
=
sl
~
z
cl
z
+
C
∫
sl
~
z
d
z
=
−
cl
~
z
cl
z
+
C
{\displaystyle {\begin{aligned}\int \operatorname {cl} z\mathop {\mathrm {d} z} &=\arctan \operatorname {sl} z+C\\\int \operatorname {sl} z\mathop {\mathrm {d} z} &=-\arctan \operatorname {cl} z+C\\\int {\tilde {\operatorname {cl} }}\,z\,\mathrm {d} z&={\frac {{\tilde {\operatorname {sl} }}\,z}{\operatorname {cl} z}}+C\\\int {\tilde {\operatorname {sl} }}\,z\,\mathrm {d} z&=-{\frac {{\tilde {\operatorname {cl} }}\,z}{\operatorname {cl} z}}+C\end{aligned}}}
Argument sum and multiple identities
Like the trigonometric functions, the lemniscate functions satisfy argument sum and difference identities. The original identity used by Fagnano for bisection of the lemniscate was:[ 19]
sl
(
u
+
v
)
=
sl
u
s
l
′
v
+
sl
v
s
l
′
u
1
+
s
l
2
u
s
l
2
v
{\displaystyle \operatorname {sl} (u+v)={\frac {\operatorname {sl} u\,\operatorname {sl'} v+\operatorname {sl} v\,\operatorname {sl'} u}{1+\operatorname {sl^{2}} u\,\operatorname {sl^{2}} v}}}
The derivative and Pythagorean-like identities can be used to rework the identity used by Fagano in terms of sl and cl . Defining a tangent-sum operator
a
⊕
b
:=
tan
(
arctan
a
+
arctan
b
)
{\displaystyle a\oplus b\mathrel {:=} \tan(\arctan a+\arctan b)}
and tangent-difference operator
a
⊖
b
:=
a
⊕
(
−
b
)
,
{\displaystyle a\ominus b\mathrel {:=} a\oplus (-b),}
the argument sum and difference identities can be expressed as:[ 20]
cl
(
u
+
v
)
=
cl
u
cl
v
⊖
sl
u
sl
v
=
cl
u
cl
v
−
sl
u
sl
v
1
+
sl
u
cl
u
sl
v
cl
v
cl
(
u
−
v
)
=
cl
u
cl
v
⊕
sl
u
sl
v
sl
(
u
+
v
)
=
sl
u
cl
v
⊕
cl
u
sl
v
=
sl
u
cl
v
+
cl
u
sl
v
1
−
sl
u
cl
u
sl
v
cl
v
sl
(
u
−
v
)
=
sl
u
cl
v
⊖
cl
u
sl
v
{\displaystyle {\begin{aligned}\operatorname {cl} (u+v)&=\operatorname {cl} u\,\operatorname {cl} v\ominus \operatorname {sl} u\,\operatorname {sl} v={\frac {\operatorname {cl} u\,\operatorname {cl} v-\operatorname {sl} u\,\operatorname {sl} v}{1+\operatorname {sl} u\,\operatorname {cl} u\,\operatorname {sl} v\,\operatorname {cl} v}}\\[2mu]\operatorname {cl} (u-v)&=\operatorname {cl} u\,\operatorname {cl} v\oplus \operatorname {sl} u\,\operatorname {sl} v\\[2mu]\operatorname {sl} (u+v)&=\operatorname {sl} u\,\operatorname {cl} v\oplus \operatorname {cl} u\,\operatorname {sl} v={\frac {\operatorname {sl} u\,\operatorname {cl} v+\operatorname {cl} u\,\operatorname {sl} v}{1-\operatorname {sl} u\,\operatorname {cl} u\,\operatorname {sl} v\,\operatorname {cl} v}}\\[2mu]\operatorname {sl} (u-v)&=\operatorname {sl} u\,\operatorname {cl} v\ominus \operatorname {cl} u\,\operatorname {sl} v\end{aligned}}}
These resemble their trigonometric analogs :
cos
(
u
±
v
)
=
cos
u
cos
v
∓
sin
u
sin
v
sin
(
u
±
v
)
=
sin
u
cos
v
±
cos
u
sin
v
{\displaystyle {\begin{aligned}\cos(u\pm v)&=\cos u\,\cos v\mp \sin u\,\sin v\\[6mu]\sin(u\pm v)&=\sin u\,\cos v\pm \cos u\,\sin v\end{aligned}}}
In particular, to compute the complex-valued functions in real components,
cl
(
x
+
i
y
)
=
cl
x
−
i
sl
x
sl
y
cl
y
cl
y
+
i
sl
x
cl
x
sl
y
=
cl
x
cl
y
(
1
−
sl
2
x
sl
2
y
)
cl
2
y
+
sl
2
x
cl
2
x
sl
2
y
−
i
sl
x
sl
y
(
cl
2
x
+
cl
2
y
)
cl
2
y
+
sl
2
x
cl
2
x
sl
2
y
sl
(
x
+
i
y
)
=
sl
x
+
i
cl
x
sl
y
cl
y
cl
y
−
i
sl
x
cl
x
sl
y
=
sl
x
cl
y
(
1
−
cl
2
x
sl
2
y
)
cl
2
y
+
sl
2
x
cl
2
x
sl
2
y
+
i
cl
x
sl
y
(
sl
2
x
+
cl
2
y
)
cl
2
y
+
sl
2
x
cl
2
x
sl
2
y
{\displaystyle {\begin{aligned}\operatorname {cl} (x+iy)&={\frac {\operatorname {cl} x-i\operatorname {sl} x\,\operatorname {sl} y\,\operatorname {cl} y}{\operatorname {cl} y+i\operatorname {sl} x\,\operatorname {cl} x\,\operatorname {sl} y}}\\[4mu]&={\frac {\operatorname {cl} x\,\operatorname {cl} y\left(1-\operatorname {sl} ^{2}x\,\operatorname {sl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}-i{\frac {\operatorname {sl} x\,\operatorname {sl} y\left(\operatorname {cl} ^{2}x+\operatorname {cl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}\\[12mu]\operatorname {sl} (x+iy)&={\frac {\operatorname {sl} x+i\operatorname {cl} x\,\operatorname {sl} y\,\operatorname {cl} y}{\operatorname {cl} y-i\operatorname {sl} x\,\operatorname {cl} x\,\operatorname {sl} y}}\\[4mu]&={\frac {\operatorname {sl} x\,\operatorname {cl} y\left(1-\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}+i{\frac {\operatorname {cl} x\,\operatorname {sl} y\left(\operatorname {sl} ^{2}x+\operatorname {cl} ^{2}y\right)}{\operatorname {cl} ^{2}y+\operatorname {sl} ^{2}x\,\operatorname {cl} ^{2}x\,\operatorname {sl} ^{2}y}}\end{aligned}}}
Gauss discovered that
sl
(
u
−
v
)
sl
(
u
+
v
)
=
sl
(
(
1
+
i
)
u
)
−
sl
(
(
1
+
i
)
v
)
sl
(
(
1
+
i
)
u
)
+
sl
(
(
1
+
i
)
v
)
{\displaystyle {\frac {\operatorname {sl} (u-v)}{\operatorname {sl} (u+v)}}={\frac {\operatorname {sl} ((1+i)u)-\operatorname {sl} ((1+i)v)}{\operatorname {sl} ((1+i)u)+\operatorname {sl} ((1+i)v)}}}
where
u
,
v
∈
C
{\displaystyle u,v\in \mathbb {C} }
such that both sides are well-defined.
Also
sl
(
u
+
v
)
sl
(
u
−
v
)
=
sl
2
u
−
sl
2
v
1
+
sl
2
u
sl
2
v
{\displaystyle \operatorname {sl} (u+v)\operatorname {sl} (u-v)={\frac {\operatorname {sl} ^{2}u-\operatorname {sl} ^{2}v}{1+\operatorname {sl} ^{2}u\operatorname {sl} ^{2}v}}}
where
u
,
v
∈
C
{\displaystyle u,v\in \mathbb {C} }
such that both sides are well-defined; this resembles the trigonometric analog
sin
(
u
+
v
)
sin
(
u
−
v
)
=
sin
2
u
−
sin
2
v
.
{\displaystyle \sin(u+v)\sin(u-v)=\sin ^{2}u-\sin ^{2}v.}
Bisection formulas:
cl
2
1
2
x
=
1
+
cl
x
1
+
sl
2
x
1
+
1
+
sl
2
x
{\displaystyle \operatorname {cl} ^{2}{\tfrac {1}{2}}x={\frac {1+\operatorname {cl} x{\sqrt {1+\operatorname {sl} ^{2}x}}}{1+{\sqrt {1+\operatorname {sl} ^{2}x}}}}}
sl
2
1
2
x
=
1
−
cl
x
1
+
sl
2
x
1
+
1
+
sl
2
x
{\displaystyle \operatorname {sl} ^{2}{\tfrac {1}{2}}x={\frac {1-\operatorname {cl} x{\sqrt {1+\operatorname {sl} ^{2}x}}}{1+{\sqrt {1+\operatorname {sl} ^{2}x}}}}}
Duplication formulas:[ 21]
cl
2
x
=
−
1
+
2
cl
2
x
+
cl
4
x
1
+
2
cl
2
x
−
cl
4
x
{\displaystyle \operatorname {cl} 2x={\frac {-1+2\,\operatorname {cl} ^{2}x+\operatorname {cl} ^{4}x}{1+2\,\operatorname {cl} ^{2}x-\operatorname {cl} ^{4}x}}}
sl
2
x
=
2
sl
x
cl
x
1
+
sl
2
x
1
+
sl
4
x
{\displaystyle \operatorname {sl} 2x=2\,\operatorname {sl} x\,\operatorname {cl} x{\frac {1+\operatorname {sl} ^{2}x}{1+\operatorname {sl} ^{4}x}}}
Triplication formulas:[ 21]
cl
3
x
=
−
3
cl
x
+
6
cl
5
x
+
cl
9
x
1
+
6
cl
4
x
−
3
cl
8
x
{\displaystyle \operatorname {cl} 3x={\frac {-3\,\operatorname {cl} x+6\,\operatorname {cl} ^{5}x+\operatorname {cl} ^{9}x}{1+6\,\operatorname {cl} ^{4}x-3\,\operatorname {cl} ^{8}x}}}
sl
3
x
=
3
sl
x
−
6
sl
5
x
−
1
sl
9
x
1
+
6
sl
4
x
−
3
sl
8
x
{\displaystyle \operatorname {sl} 3x={\frac {\color {red}{3}\,\color {black}{\operatorname {sl} x-\,}\color {green}{6}\,\color {black}{\operatorname {sl} ^{5}x-\,}\color {blue}{1}\,\color {black}{\operatorname {sl} ^{9}x}}{\color {blue}{1}\,\color {black}{+\,}\,\color {green}{6}\,\color {black}{\operatorname {sl} ^{4}x-\,}\color {red}{3}\,\color {black}{\operatorname {sl} ^{8}x}}}}
Note the "reverse symmetry" of the coefficients of numerator and denominator of
sl
3
x
{\displaystyle \operatorname {sl} 3x}
. This phenomenon can be observed in multiplication formulas for
sl
β
x
{\displaystyle \operatorname {sl} \beta x}
where
β
=
m
+
n
i
{\displaystyle \beta =m+ni}
whenever
m
,
n
∈
Z
{\displaystyle m,n\in \mathbb {Z} }
and
m
+
n
{\displaystyle m+n}
is odd.[ 15]
Lemnatomic polynomials
Let
L
{\displaystyle L}
be the lattice
L
=
Z
(
1
+
i
)
ϖ
+
Z
(
1
−
i
)
ϖ
.
{\displaystyle L=\mathbb {Z} (1+i)\varpi +\mathbb {Z} (1-i)\varpi .}
Furthermore, let
K
=
Q
(
i
)
{\displaystyle K=\mathbb {Q} (i)}
,
O
=
Z
[
i
]
{\displaystyle {\mathcal {O}}=\mathbb {Z} [i]}
,
z
∈
C
{\displaystyle z\in \mathbb {C} }
,
β
=
m
+
i
n
{\displaystyle \beta =m+in}
,
γ
=
m
′
+
i
n
′
{\displaystyle \gamma =m'+in'}
(where
m
,
n
,
m
′
,
n
′
∈
Z
{\displaystyle m,n,m',n'\in \mathbb {Z} }
),
m
+
n
{\displaystyle m+n}
be odd,
m
′
+
n
′
{\displaystyle m'+n'}
be odd,
γ
≡
1
mod
2
(
1
+
i
)
{\displaystyle \gamma \equiv 1\,\operatorname {mod} \,2(1+i)}
and
sl
β
z
=
M
β
(
sl
z
)
{\displaystyle \operatorname {sl} \beta z=M_{\beta }(\operatorname {sl} z)}
. Then
M
β
(
x
)
=
i
ε
x
P
β
(
x
4
)
Q
β
(
x
4
)
{\displaystyle M_{\beta }(x)=i^{\varepsilon }x{\frac {P_{\beta }(x^{4})}{Q_{\beta }(x^{4})}}}
for some coprime polynomials
P
β
(
x
)
,
Q
β
(
x
)
∈
O
[
x
]
{\displaystyle P_{\beta }(x),Q_{\beta }(x)\in {\mathcal {O}}[x]}
and some
ε
∈
{
0
,
1
,
2
,
3
}
{\displaystyle \varepsilon \in \{0,1,2,3\}}
[ 22] where
x
P
β
(
x
4
)
=
∏
γ
|
β
Λ
γ
(
x
)
{\displaystyle xP_{\beta }(x^{4})=\prod _{\gamma |\beta }\Lambda _{\gamma }(x)}
and
Λ
β
(
x
)
=
∏
[
α
]
∈
(
O
/
β
O
)
×
(
x
−
sl
α
δ
β
)
{\displaystyle \Lambda _{\beta }(x)=\prod _{[\alpha ]\in ({\mathcal {O}}/\beta {\mathcal {O}})^{\times }}(x-\operatorname {sl} \alpha \delta _{\beta })}
where
δ
β
{\displaystyle \delta _{\beta }}
is any
β
{\displaystyle \beta }
-torsion generator (i.e.
δ
β
∈
(
1
/
β
)
L
{\displaystyle \delta _{\beta }\in (1/\beta )L}
and
[
δ
β
]
∈
(
1
/
β
)
L
/
L
{\displaystyle [\delta _{\beta }]\in (1/\beta )L/L}
generates
(
1
/
β
)
L
/
L
{\displaystyle (1/\beta )L/L}
as an
O
{\displaystyle {\mathcal {O}}}
-module ). Examples of
β
{\displaystyle \beta }
-torsion generators include
2
ϖ
/
β
{\displaystyle 2\varpi /\beta }
and
(
1
+
i
)
ϖ
/
β
{\displaystyle (1+i)\varpi /\beta }
. The polynomial
Λ
β
(
x
)
∈
O
[
x
]
{\displaystyle \Lambda _{\beta }(x)\in {\mathcal {O}}[x]}
is called the
β
{\displaystyle \beta }
-th lemnatomic polynomial . It is monic and is irreducible over
K
{\displaystyle K}
. The lemnatomic polynomials are the "lemniscate analogs" of the cyclotomic polynomials ,[ 23]
Φ
k
(
x
)
=
∏
[
a
]
∈
(
Z
/
k
Z
)
×
(
x
−
ζ
k
a
)
.
{\displaystyle \Phi _{k}(x)=\prod _{[a]\in (\mathbb {Z} /k\mathbb {Z} )^{\times }}(x-\zeta _{k}^{a}).}
The
β
{\displaystyle \beta }
-th lemnatomic polynomial
Λ
β
(
x
)
{\displaystyle \Lambda _{\beta }(x)}
is the minimal polynomial of
sl
δ
β
{\displaystyle \operatorname {sl} \delta _{\beta }}
in
K
[
x
]
{\displaystyle K[x]}
. For convenience, let
ω
β
=
sl
(
2
ϖ
/
β
)
{\displaystyle \omega _{\beta }=\operatorname {sl} (2\varpi /\beta )}
and
ω
~
β
=
sl
(
(
1
+
i
)
ϖ
/
β
)
{\displaystyle {\tilde {\omega }}_{\beta }=\operatorname {sl} ((1+i)\varpi /\beta )}
. So for example, the minimal polynomial of
ω
5
{\displaystyle \omega _{5}}
(and also of
ω
~
5
{\displaystyle {\tilde {\omega }}_{5}}
) in
K
[
x
]
{\displaystyle K[x]}
is
Λ
5
(
x
)
=
x
16
+
52
x
12
−
26
x
8
−
12
x
4
+
1
,
{\displaystyle \Lambda _{5}(x)=x^{16}+52x^{12}-26x^{8}-12x^{4}+1,}
and[ 24]
ω
5
=
−
13
+
6
5
+
2
85
−
38
5
4
{\displaystyle \omega _{5}={\sqrt[{4}]{-13+6{\sqrt {5}}+2{\sqrt {85-38{\sqrt {5}}}}}}}
ω
~
5
=
−
13
−
6
5
+
2
85
+
38
5
4
{\displaystyle {\tilde {\omega }}_{5}={\sqrt[{4}]{-13-6{\sqrt {5}}+2{\sqrt {85+38{\sqrt {5}}}}}}}
[ 25]
(an equivalent expression is given in the table below). Another example is[ 23]
Λ
−
1
+
2
i
(
x
)
=
x
4
−
1
+
2
i
{\displaystyle \Lambda _{-1+2i}(x)=x^{4}-1+2i}
which is the minimal polynomial of
ω
−
1
+
2
i
{\displaystyle \omega _{-1+2i}}
(and also of
ω
~
−
1
+
2
i
{\displaystyle {\tilde {\omega }}_{-1+2i}}
) in
K
[
x
]
.
{\displaystyle K[x].}
If
p
{\displaystyle p}
is prime and
β
{\displaystyle \beta }
is positive and odd,[ 26] then[ 27]
deg
Λ
β
=
β
2
∏
p
|
β
(
1
−
1
p
)
(
1
−
(
−
1
)
(
p
−
1
)
/
2
p
)
{\displaystyle \operatorname {deg} \Lambda _{\beta }=\beta ^{2}\prod _{p|\beta }\left(1-{\frac {1}{p}}\right)\left(1-{\frac {(-1)^{(p-1)/2}}{p}}\right)}
which can be compared to the cyclotomic analog
deg
Φ
k
=
k
∏
p
|
k
(
1
−
1
p
)
.
{\displaystyle \operatorname {deg} \Phi _{k}=k\prod _{p|k}\left(1-{\frac {1}{p}}\right).}
Specific values
Just as for the trigonometric functions, values of the lemniscate functions can be computed for divisions of the lemniscate into
n
{\displaystyle n}
parts of equal length, using only basic arithmetic and square roots, if and only if
n
{\displaystyle n}
is of the form
n
=
2
k
p
1
p
2
⋯
p
m
{\displaystyle n=2^{k}p_{1}p_{2}\cdots p_{m}}
where
k
{\displaystyle k}
is a non-negative integer and each
p
i
{\displaystyle p_{i}}
(if any) is a distinct Fermat prime .[ 28]
n
{\displaystyle n}
cl
n
ϖ
{\displaystyle \operatorname {cl} n\varpi }
sl
n
ϖ
{\displaystyle \operatorname {sl} n\varpi }
1
{\displaystyle 1}
−
1
{\displaystyle -1}
0
{\displaystyle 0}
5
6
{\displaystyle {\tfrac {5}{6}}}
−
2
3
−
3
4
{\displaystyle -{\sqrt[{4}]{2{\sqrt {3}}-3}}}
1
2
(
3
+
1
−
12
4
)
{\displaystyle {\tfrac {1}{2}}{\bigl (}{\sqrt {3}}+1-{\sqrt[{4}]{12}}{\bigr )}}