Equiareal mapIn differential geometry, an equiareal map, sometimes called an authalic map, is a smooth map from one surface to another that preserves the areas of figures. PropertiesIf M and N are two Riemannian (or pseudo-Riemannian) surfaces, then an equiareal map f from M to N can be characterized by any of the following equivalent conditions:
where denotes the Euclidean wedge product of vectors and df denotes the pushforward along f. Linear transformations![]() Every Euclidean isometry of the Euclidean plane is equiareal, but the converse is not true. In fact, shear mapping and squeeze mapping are counterexamples to the converse. Shear mapping takes a rectangle to a parallelogram of the same area. Written in matrix form, a shear mapping along the x-axis is Squeeze mapping lengthens and contracts the sides of a rectangle in a reciprocal manner so that the area is preserved. Written in matrix form, with λ > 1 the squeeze reads A linear transformation multiplies areas by the absolute value of its determinant |ad – bc|. Gaussian elimination shows that every equiareal linear transformation (rotations included) can be obtained by composing at most two shears along the axes, a squeeze and (if the determinant is negative), a reflection. In map projectionsIn the context of geographic maps, a map projection is called equal-area, equivalent, authalic, equiareal, or area-preserving, if areas are preserved up to a constant factor; embedding the target map, usually considered a subset of R2, in the obvious way in R3, the requirement above then is weakened to: for some κ > 0 not depending on and . For examples of such projections, see equal-area map projection. See alsoReferences
|