Before proceeding to a general definition of the tangent vector, we discuss its use in calculus and its tensor properties.
Calculus
Let be a parametric smooth curve. The tangent vector is given by provided it exists and provided , where we have used a prime instead of the usual dot to indicate differentiation with respect to parameter t.[1] The unit tangent vector is given by
Example
Given the curve
in , the unit tangent vector at is given by
Where the components of the tangent vector are found by taking the derivative of each corresponding component of the curve with respect to .
Contravariance
If is given parametrically in the n-dimensional coordinate systemxi (here we have used superscripts as an index instead of the usual subscript) by or
then the tangent vector field is given by
Under a change of coordinates
the tangent vector in the ui-coordinate system is given by
where we have used the Einstein summation convention. Therefore, a tangent vector of a smooth curve will transform as a contravariant tensor of order one under a change of coordinates.[2]
Definition
Let be a differentiable function and let be a vector in . We define the directional derivative in the direction at a point by
The tangent vector at the point may then be defined[3] as
Properties
Let be differentiable functions, let be tangent vectors in at , and let . Then
Tangent vector on manifolds
Let be a differentiable manifold and let be the algebra of real-valued differentiable functions on . Then the tangent vector to at a point in the manifold is given by the derivation which shall be linear — i.e., for any and we have
Note that the derivation will by definition have the Leibniz property