Logaritma![]()
Dalam matematika, logaritma adalah fungsi invers dari eksponensiasi. Dengan kata lain, logaritma dari x adalah eksponen dengan bilangan pokok b yang dipangkatkan dengan bilangan konstan lain agar memperoleh nilai x. Kasus sederhana dalam logaritma adalah menghitung jumlah munculnya faktor yang sama dalam perkalian berulang. Sebagai contoh, 1000 = 10 × 10 × 10 = 103 dibaca, "logaritma 1000 dengan bilangan pokok 10 sama dengan 3" atau dinotasikan sebagai 10log (1000) = 3. Logaritma dari x dengan bilangan pokok b dilambangkan blog x. Terkadang logaritma dilambangkan sebagai logb (x) atau tanpa menggunakan tanda kurung, logb x, atau bahkan tanpa menggunakan bilangan pokok khusus, log x. Ada tiga bilangan pokok logaritma yang umum beserta kegunaannya. Logaritma dengan bilangan pokok 10 (b = 10) disebut sebagai logaritma umum, yang biasanya dipakai dalam ilmu sains dan rekayasa. Logaritma dengan dengan bilangan pokok bilangan e (b ≈ 2.718) disebut sebagai logaritma alami, yang dipakai dengan luas dalam matematika dan fisika, karena dapat mempermudah perhitungan integral dan turunan. Logaritma dengan bilangan pokok 2 (b = 2) disebut sebagai logaritma biner, yang sering kali dipakai dalam ilmu komputer. Logaritma diperkenalkan oleh John Napier pada tahun 1614 sebagai alat yang menyederhanakan perhitungan.[1] Logaritma dipakai lebih cepat dalam navigator, ilmu sains, rekayasa, ilmu ukur wilayah, dan bidang lainnya untuk lebih mempermudah perhitungan nilai yang sangat akurat. Dengan menggunakan tabel logaritma, cara yang membosankan seperti mengalikan digit yang banyak dapat digantikan dengan melihat tabel dan penjumlahan yang lebih mudah. Ini dapat dilakukan karena logaritma dari hasil kali bilangan merupakan logaritma dari jumlah faktor bilangan: asalkan bahwa b, x dan y bilangan positif dan b ≠ 1. Mistar hitung yang juga berasal dari logaritma dapat mempermudah perhitungan tanpa menggunakan tabel, namun perhitungannya kurang akurat. Leonhard Euler mengaitkan gagasan logaritma saat ini dengan fungsi eksponensial pada abad ke-18, dan juga memperkenalkan huruf e sebagai bilangan pokok dari logaritma alami.[2] Penerapan skala logaritmik dipakai dalam mengurangi kuantitas yang sangat besar menjadi lebih kecil. Sebagai contoh, desibel (dB) adalah satuan yang digunakan untuk menyatakan rasio sebagai logaritma, sebagian besar untuk kekuatan sinyal dan amplitudo (contoh umumnya pada tekanan suara). Dalam kimia, pH mengukur keasaman dari larutan berair melalui logaritma. Logaritma umumnya dipakai dalam rumus ilmiah, dalam pengukuran kompleksitas algoritma dan objek geometris yang disebut sebagai fraktal. Logaritma juga membantu untuk menjelaskan frekuensi rasio interval musik, ditemukan di rumus yang menghitung bilangan prima atau hampiran faktorial, memberikan gambaran dalam psikofisika, dan dapat membantu perhitungan akuntansi forensik. Konsep logaritma sebagai invers dari eksponensiasi juga memperluas ke struktur matematika lain. Namun pada umumnya, logaritma cenderung merupakan fungsi bernilai banyak. Sebagai contoh, logaritma kompleks merupakan invers dari fungsi eksponensial pada bilangan kompleks. Mirip dengan contoh sebelumnya, logaritma diskret dalam grup hingga, merupakan invers fungsi eksponensial bernilai banyak yang memiliki kegunaan dalam kriptografi kunci publik. Alasan![]() Operasi aritmetika yang paling dasar adalah penambahan, perkalian, dan eksponen. Kebalikan dari penambahan adalah pengurangan, dan kebalikan dari perkalian adalah pembagian. Mirip dengan contoh sebelumnya, logaritma merupakan kebalikan (atau invers) dari operasi eksponensiasi. Eksponensiasi adalah bilangan bilangan pokok b yang ketika dipangkatkan dengan y memberikan nilai x. Ini dirumuskan sebagai Sebagai contoh, 2 pangkat 3 memberikan nilai 8. Secara matematis, . Logaritma dengan bilangan pokok b adalah operasi invers yang menyediakan nilai keluaran y dari nilai masukan x. Hal ini mengartikan bahwa y = blog x ekuivalen dengan x = by, jika b bilangan real positif. (Jika b bukanlah bilangan real positif, eksponensiasi dan logaritma dapat terdefinisi tetapi membutuhkan beberapa nilai, sehingga definisi darinya semakin rumit.) Salah satu alasan bersejarah utamanya dalam memperkenalkan logaritma adalah rumus yang dapat mempermudah perhitungan nilai perkalian dan pembagian dengan penjumlahan, pengurangan, dan melihat tabel logaritma. Perhitungan ini dipakai sebelum komputer ditemukan. DefinisiDiberikan bilangan real positif b sehingga b ≠ 1, maka logaritma dari bilangan real positif x terhadap bilangan pokok b[nb 1] adalah eksponen dengan bilangan pokok b yang dipangkatkan bilangan agar memperoleh nilai x. Dengan kata lain, logaritma bilangan pokok b dari x adalah bilangan real y sehingga by = x.[3] Logaritma dilambangkan sebagai blog x (dibaca "logaritma x dengan bilangan pokok b"). Terdapat definisi yang mirip dan lebih ringkas mengatakan bahwa fungsi blog invers dengan fungsi x ↦ bx. Sebagai contoh, 2log 16 = 4, karena 24 = 2 × 2 × 2 × 2 = 16. Logaritma juga dapat bernilai negatif, contohnya 2log 12 = –1, karena 2–1 = 121 = 12. Logaritma juga berupa nilai desimal, sebagai contoh 10log 150 kira-kira sama dengan 2,176 karena terletak di antara 2 dan 3, dan begitupula 150 terletak antara 102 = 100 dan 103 = 1000. Adapun sifat logaritma bahwa untuk setiap b, blog b = 1 karena b1 = b, dan blog 1 = 0 karena b0 = 1. Identitas logaritmaAda beberapa rumus penting yang mengaitkan logaritma dengan yang lainnya.[4] Hasil kali, hasil bagi, pangkat, dan akarLogaritma dari hasil kali merupakan jumlah logaritma dari bilangan yang dikalikan, dan logaritma dari hasil bagi dari dua bilangan merupakan selisih logaritma. Logaritma dari bilangan pangkat ke-p sama dengan p dikali logaritma dari bilangan tersendiri, dan logaritma bilangan akar ke-p sama dengan logaritma dibagi dengan p. Tabel berikut memuat daftar sifat-sifat logaritma tersebut beserta contohnya. Masing-masing identitas ini diperoleh dari hasil substitusi dari definisi logaritma atau pada ruas kiri persamaan.
Mengubah bilangan pokokLogaritma blog x dapat dihitung sebagai hasil bagi logaritma x dengan logaritma b terhadap bilangan pokok sembarang k. Secara matematis dirumuskan sebagai:
Kalkulator ilmiah merupakan alat yang menghitung logaritma dengan bilangan pokok 10 dan e.[5] Logaritma terhadap setiap bilangan pokok b dapat ditentukan menggunakan kedua logaritma tersebut melalui rumus sebelumnya: Diberikan suatu bilangan x dan logaritma y = blog x, dengan b adalah bilangan pokok yang tidak diketahui. Bilangan pokok tersebut dapat dinyatakan dengan Rumus ini dapat diperlihatkan dengan mengambil persamaan yang mendefinisikan x = bblog x = by, lalu dipangkatkan dengan 1y. Bilangan pokok khusus![]() Secara khusus, terdapat tiga bilangan pokok yang umum di antara semua pilihan bilangan pokok pada logaritma. Ketiga bilangan pokok tersebut adalah b = 10, b = e (konstanta bilangan irasional yang kira-kira sama dengan 2,71828), dan b = 2 (logaritma biner). Dalam analisis matematika, logaritma dengan bilangan pokok e tersebar karena sifat analitik yang dijelaskan di bawah. Di sisi lain, logaritma dengan bilangan pokok 10 mudah dipakai dalam perhitungan manual dalam sistem bilangan desimal:[6] Jadi, 10log x berkaitan dengan jumlah digit desimal dari bilangan bulat positif x: jumlah digitnya merupakan bilangan bulat terkecil yang lebih besar dari 10log x.[7] Sebagai contoh, 10log 1430 kira-kira sama dengan 3,15. Bilangan berikutnya merupakan jumlah digit dari 1430, yaitu 4. Dalam teori informasi, logaritma alami dipakai dalam nat dan logaritma dengan bilangan pokok 2 dipakai dalam bit sebagai satuan dasar informasi.[8] Logaritma biner juga dipakai dalam ilmu komputer, dengan sistem biner ditemukan dimana-mana. Dalam teori musik, rasio tinggi nada kedua (yaitu oktaf) ditemukan dimana-mana dan jumlah sen antara setiap dua tinggi nada dirumuskan sebagai konstanta 1200 dikali logaritma dari rasio (yaitu, 100 sen per setengah nada dengan temperamen sama). Dalam fotografi, logaritma dengan bilangan pokok dua dipakai untuk mengukur nilai pajanan, tingkatan cahaya, waktu eksposur, tingkap, dan kecepatan film dalam "stop".[9] Tabel berikut memuat notasi-notasi umum mengenai bilangan pokok beserta bidang yang dipakai. Selain blog x, adapula notasi logaritma lain yang ditulis sebagai logb x, dan juga seperti log x. Pada kolom "Notasi ISO" memuat penamaan yang disarankan Organisasi Standardisasi Internasional, yakni ISO 80000-2.[10] Karena notasi log x telah dipakai untuk ketiga bilangan pokok di atas (atau ketika bilangan pokok belum ditentukan), bilangan pokok yang dimaksud harus sering diduga tergantung konteks atau bidangnya. Sebagai contoh, log biasanya mengacu pada 2log dalam ilmu komputer, dan log mengacu pada elog.[11] Dalam konteks lainnya, log seringkali mengacu pada 10log.[12]
SejarahSejarah logaritma yang dimulai dari Eropa pada abad ketujuh belas merupakan penemuan fungsi terbaru yang memperluas dunia analisis di luar keterbatasan metode aljabar. Metode logaritma dikemukakan secara terbuka oleh John Napier pada tahun 1614, dalam bukunya yang berjudul Mirifici Logarithmorum Canonis Descriptio.[19][20] Namun, teknik-teknik lain sebelum penemuan Napier sudah ada dengan keterbatasan metode yang serupa, contohnya seperti prosthafaeresis atau penggunaan tabel barisan, yang dikembangkan dengan luas oleh Jost Bürgi sekitar tahun 1600.[21][22] Napier menciptakan istilah untuk logaritma dalam bahasa Latin Tengah, “logaritmus”, yang berasal dari gabungan dua kata Yunani, logos “proporsi, rasio, kata” + arithmos “bilangan”. Secara harfiah, "logaritmus" berarti “bilangan rasio”. Logaritma umum dari bilangan adalah indeks dari perpangkatan sepuluh yang sama dengan bilangan tersebut.[23] Bilangan yang sangat membutuhkan banyak angka merupakan kiasan kasar untuk logaritma umum, dan Archimedes menyebutnya sebagai “orde bilangan”.[24] Logaritma real pertama adalah metode heuristik yang mengubah perkalian menjadi penjumlahan, sehingga memudahkan perhitungan yang cepat. Ada beberapa metode yang menggunakan tabel yang diperoleh dari identitas trigonometri,[25] dan metode tersebut dinamakan prosthafaeresis. Penemuan fungsi yang dikenal saat ini sebagai logaritma alami, berawal dari saat Grégoire de Saint-Vincent mencoba menggambarkan kuadratur hiperbola persegi panjang. Archimedes menulis risalah yang berjudul The Quadrature of the Parabola pada abad ke-3 SM, tetapi kuadratur hiperbola menghindari semua upayanya hingga Saint-Vincent menerbitkan hasilnya pada tahun 1647. Logaritma yang mengaitkan barisan dan deret geometri dalam argumen dan nilai barisan dan deret aritmetika, meminta Antonio de Sarasa untuk mengaitkan kuadratur Saint-Vincent dan tradisi logaritma dalam prosthafaeresis sehingga mengarah ke sebuah persamaan kata untuk logaritma alami, yaitu "logaritma hiperbolik". Christiaan Huygens dan James Gregory mulai mengenali fungsi baru tersebut. Leibniz memakai notasi Log y pada tahun 1675,[26] dan tahun berikutnya ia mengaitkannya dengan integral Sebelum Euler mengembangkan konsep modernnya tentang logaritma alami kompleks, Roger Cotes memperlihatkan hasil yang hampir sama pada tahun 1714 bahwa[27]
Tabel logaritma, mistar hitung, dan penerapan bersejarah![]() Dengan menyederhanakan perhitungan yang rumit sebelum adanya mesin hitung komputer, logaritma berkontribusi pada kemajuan pengetahuan, khususnya astronomi. Logaritma sangat penting terhadap kemajuan dalam survei, navigasi benda langit, dan cabang lainnya. Pierre-Simon Laplace menyebut logaritma sebagai
Karena fungsi f(x) = bx adalah fungsi invers dari blog x, maka fungsi tersebut disebut sebagai antilogaritma.[29] Saat ini, antilogaritma lebih sering disebut fungsi eksponensial. Tabel logaritmaSebuah alat penting yang memungkinkan penggunaan logaritma adalah tabel logaritma.[30] Tabel logaritma pertama kali disusun oleh Henry Briggs pada tahun 1617 setelah penemuan Napier, tetapi penemuannya menggunakan 10 sebagai bilangan pokok. Tabel pertamanya memuat logaritma umum dari semua bilangan bulat yang berkisar antara 1 dengan 1000, dengan ketepatan yang dimiliki 14 digit, dan kemudian ia membuat tabel dengan kisaran yang besar. Tabel tersebut mencantumkan nilai untuk setiap bilangan dalam kisaran dan ketepatan tertentu. Karena bilangan yang berbeda dengan faktor 10 memiliki logaritma yang berbeda dengan bilangan bulat, logaritma dengan bilangan pokok 10 digunakan secara universal untuk perhitungan, sehingga disebut logaritma umum. Logaritma umum dari dipisahkan menjadi bagian bilangan bulat yang dikenal sebagai karakteristik, dan bagian pecahan (bahasa Inggris: fractional part) yang dikenal sebagai mantissa. Tabel logaritma hanya perlu menyertakan mantissa, karena karakteristik logaritma umum dapat dengan mudah ditentukan dengan menghitung angka dari titik desimal.[31] Karakteristik logaritma umum dari sama dengan satu ditambah karakteristik , dan mantissanya sama. Dengan menggunakan tabel logartima dengan tiga digit, nilai logaritma dari 3542 kira-kira sama dengan Nilainya dengan ketepatan yang sangat tinggi dapat diperoleh melalui interpolasi: Nilai dapat ditentukan dengan pencarian terbalik pada tabel yang sama, karena logaritma merupakan fungsi monoton. PerhitunganHasil kali atau hasil bagi dari dua bilangan positif c dan d biasanya dihitung sebagai penambahan dan pengurangan logaritma. Hasil kali cd berasal dari antilogaritma dari penambahan dan hasil bagi cd berasal dari antilogaritma dari pengurangan, melalui tabel yang sama: dan Untuk perhitungan manual yang meminta ketelitian yang cukup besar, melakukan pencarian kedua logaritma, menghitung jumlah atau selisihnya, dan mencari antilogaritma jauh lebih cepat daripada menghitung perkalian dengan metode sebelumnya seperti prosthafaeresis, yang mengandalkan identitas trigonometri. Perhitungan pangkat direduksi menjadi perkalian, dan sedangkan perhitungan akar direduksi menjadi pembagian. Pernyataan ini dapat dilihat sebagai dan Perhitungan trigonometri dilengkapi dengan tabel-tabel yang memuat logaritma umum dari fungsi trigonometri. Mistar hitungPenerapan penting lainnya adalah mistar hitung, sepasang skala yang dibagi secara logaritmik yang digunakan dalam perhitungan. Adapun skala logaritmik yang tidak memiliki sorong, mistar Gunter, ditemukan tak lama setelah penemuan Napier dan disempurnakan oleh William Oughtred untuk menciptakan sepasang skala logaritmik yang dapat dipindahkan terhadap satu sama lain, yaitu mistar hitung. Angka yang ditempatkan pada skala hitung pada jarak sebanding dengan selisih antara logaritmanya. Menggeser skala atas dengan tepat berarti menambahkan logaritma secara mekanis, seperti yang diilustrasikan berikut ini: ![]() Sebagai contoh, dengan menambahkan jarak dari 1 ke 2 pada skala di bagian bawah ke jarak dari 1 ke 3 pada skala di bagian atas menghasilkan hasil kali 6, yang dibacakan di bagian bawah. Mistar hitung adalah sebuah alat menghitung yang penting bagi para insinyur dan ilmuwan hingga tahun 1970-an, karena dengan mengorbankan ketepatan nilai memungkinkan perhitungan yang jauh lebih cepat daripada teknik berdasarkan tabel.[32] Sifat analitikKajian yang lebih dalam mengenai logaritma memerlukan sebuah konsep yang disebut fungsi. Fungsi merupakan sebuah kaidah yang dipetakan suatu bilangan akan menghasilkan bilangan lain.[33] Contohnya seperti fungsi yang menghasilkan bilangan konstan b, yang dipangkatkan setiap bilangan real x. Fungsi ini secara matematis ditulis sebagai f(x) = b x. Ketika b positif dan tak sama dengan 1, maka f adalah fungsi terbalikkan ketika dianggap sebagai fungsi dengan interval dari bilangan real ke bilangan real positif. KeberadaanMisalkan b adalah bilangan real positif yang tidak sama dengan 1 dan misalkan f(x) = b x. Pernyataan yang diikuti dari teorema nilai antara ini,[34] merupakan hasil standar dalam analisis real yang mengatakan bahwa setiap fungsi monoton sempurna dan kontinu merupakan fungsi bijektif antara ranah (bahasa Inggris: domain) dan kisarannya (bahasa Inggris: range). Pernyataan saat ini mengatakan bahwa f yang menaik sempurna (untuk b > 1), atau menurun sempurna (untuk 0 < b < 1)[35] merupakan fungsi kontinu, memiliki ranah dan memiliki kisaran . Oleh karena itu, f adalah fungsi bijeksi dari ke . Dengan kata lain, untuk setiap bilangan real positif y, terdapat setidaknya satu bilangan real x sehingga . Misalkan yang menyatakan invers dari fungsi f. Dalam artian, blog y adalah bilangan real tunggal x sehingga . Fungsi ini disebut fungsi logaritma dengan bilangan pokok-b atau fungsi logaritmik (atau logaritma saja). Karakterisasi melalui rumus hasil kaliPada dasarnya, fungsi blog x juga dapat dikarakterisasikan melalui rumus hasil kali Lebih tepatnya, logaritma untuk setiap bilangan pokok b > 1 yang hanya merupakan fungsi f naik dari bilangan real positif ke bilangan real memenuhi sifat bahwa f(b) = 1 dan[36] Grafik fungsi logaritma![]() Seperti yang dibahas sebelumnya, fungsi blog invers terhadap fungsi eksponensial . Karena itu, grafiknya berkorespondensi dengan satu sama lain saat menukar koordinat-x dan koordinat-y (atau saat melakukan pencerminan di garis diagonal x = y), seperti yang diperlihatkan sebagai berikut: sebuah titik (t, u = bt) pada grafik dari f menghasilkan sebuah titik (u, t = blog u) pada grafik logaritma dan sebaliknya. Akibatnya, blog (x) divergen menuju takhingga (dalam artian semakin besar dari setiap bilangan yang diberikan) jika x naik menuju takhingga, asalkan b lebih besar dari satu. Pada kasus tersebut, blog(x) merupakan fungsi menaik. Sedangkan untuk kasus b < 1, blog (x) cenderung menuju ke negatif takhingga. Ketika x mendekati nol, blog x menuju ke negatif takhingga untuk b > 1 dan menuju ke plus takhingga untuk b < 1. Turunan dan antiturunan![]() Sifat analitik tentang fungsi adalah melalui fungsi inversnya.[34] Jadi, ketika f(x) = bx adalah fungsi kontinu dan terdiferensialkan, maka blog y fungsi kontinu dan terdiferensialkan juga. Penjelasan kasarnya, sebuah fungsi kontinu adalah terdiferensialkan jika grafiknya tidak mempunyai "ujung" yang tajam. Lebih lanjut, ketika turunan dari f(x) menghitung nilai ln(b) bx melalui sifat-sifat fungsi eksponensial, aturan rantai menyiratkan bahwa turunan dari blog x dirumuskan sebagai [35][37] Artinya, kemiringan dari garis singgung yang menyinggung grafik logaritma dengan bilangan pokok b di titik (x, blog (x)) sama dengan 1x ln(b). Turunan dari ln(x) adalah 1x, yang berarti ini menyiratkan bahwa ln(x) adalah integral tunggal dari 1x yang mempunyai nilai 0 untuk x = 1. Hal ini merupakan rumus paling sederhana yang mendorong sifat "alami" pada logaritma alami, dan hal ini juga merupakan salah satu alasan pentingnya konstanta e. Turunan dengan argumen fungsional rampat f(x) dirumuskan sebagai Hasil bagi pada ruas kanan disebut turunan logaritmik dari f dan menghitung f'(x) melalui turunan dari ln(f(x)) dikenal sebagai pendiferensialan logaritmik.[38] Antiturunan dari logaritma alami ln(x) dirumuskan sebagai:[39] Terdapat rumus yang berkaitan, seperti antiturunan dari logaritma dengan bilangan pokok lainnya dapat diperoleh dari persamaan ini dengan mengubah bilangan pokoknya.[40] Representasi integral mengenai fungsi logaritma![]() Logaritma alami dari t dapat didefinisikan sebagai integral tentu: Definisi ini menguntungkan karena tidak bergantung pada fungsi eksponensial atau fungsi trigonometri apapun, dan definisi ini merupakan sebuah integral dari fungsi timbal balik sederhana. Penjelasan dalam integral, ln(t) sama dengan luas antara sumbu-x dan grafik fungsi 1x, yang berkisar dari x = 1 ke x = t. Penjelasan ini juga merupakan akibat dari teorema dasar kalkulus, dan bahkan turunan dari ln(x) sama dengan 1x. Rumus logaritma hasil kali dan pangkat dapat diperoleh melalui definisi ini.[41] Sebagai contoh, rumus hasil kali ln(tu) = ln(t) + ln(u) dapat disimpulkan sebagai: Persamaan (1) membagi integral menjadi dua bagian, sementara (2) mengubah variabel w menjadi xt. Pada ilustrasi dibawah, pembagian integral tersebut dapat disamakan dengan pembagian luasnya menjadi bagian berwarna kuning dan biru. Dengan mengukur luas berwarna biru kembali secara vertikal melalui faktor t dan menyusutnya melalui faktor yang sama secara horizontal tidak mengubah ukuran luasnya. Dengan memindahkan daerah biru ke daerah kuning, luasnya menyesuaikan grafik fungsi f(x) = 1x lagi. Oleh karena itu, luas biru di sebelah kiri, yang merupakan integral dari fungsi f(x) dengan interval dari t hingga tu sama dengan integral dari fungsi yang sama dengan interval 1 hingga u. Hal ini membenarkan persamaan (2) melalui bukti geometri lainnya. ![]() Rumus pangkat ln(tr) = r ln(t) dapat real dalam cara yang serupa: Persamaan kedua menggunakan perubahan variabel w = x1r melalui integral substitusi. Jumlah keseluruhan timbal balik dari bilangan asli yang dirumuskan disebut deret harmonik. Deret ini sangat terkait erat dengan logaritma alami, yang dinyatakan melalui pernyataan berikut: ketika n cenderung menuju takhingga, selisih dari konvergen (yakni mendekati dengan sembarang) ke sebuah bilangan yang dikenal sebagai konstanta Euler–Mascheroni γ = 0,5772.... Kaitan antara deret harmonik dan logaritma natural membantu dalam menganalisis kinerja algoritma seperti quicksort.[42] Transendensi logaritmaBilangan real yang bukan merupakan bilangan aljabar disebut bilangan transendental.[43] Sebagai contoh, π dan e adalah bilangan transendental, sedangkan bukan. Hampir semua bilangan real adalah transendental. Logaritma merupakan sebuah contoh fungsi transendental. Teorema Gelfond–Schneider mengatakan bahwa logaritma biasanya memberikan nilai transendental.[44] Perhitungan![]() Logaritma merupakan alat hitung yang mudah pada beberapa kasus, seperti 10log 1000 = 3. Logaritma pada umumnya dapat dihitung melalui deret kuasa atau rata-rata aritmetika–geometrik, atau didapatkan kembali dari tabel logaritma (sebelum adanya perhitungan logaritma) yang menyediakan ketepatan nilai konstan.[45][46] Metode Newton, sebuah metode berulang yang menyelesaikan persamaan melalui hampiran, juga dapat dipakai untuk menghitung logaritma, karena fungsi inversnya (yaitu fungsi eksponensial), dapat dihitung dengan cepat.[47] Dengan melihat tabel logaritma, metode yang mirip dengan CORDIC dapat dipakai untuk menghitung logaritma hanya dengan menggunakan operasi penambahan dan geseran bit.[48][49] Terlebih lagi, algoritma dari logaritma biner menghitung lb(x) secara berulang berdasarkan penguadratan x yang berulang dan menggunakan ekspresi Deret pangkatDeret Taylor![]() Untuk setiap bilangan z yang memenuhi sifat 0 < z ≤ 2, maka berlaku rumus:[nb 4][50] Pernyataan di atas merupakan tulisan singkat untuk mengatakan bahwa ln(z) dapat diaproksimasi sebagai bilangan yang lebih-lebih akurat lagi melalui ekspresi berikut: |