Powerful p-群
正式定義有限p-群稱為powerful,於為奇數時,若交換子子群包含在子群內,而於p=2時若包含在子群內。 powerful p-群的性質powerful p-群有很多性質與阿貝爾群類似,所以可作為p-群研究的好的基礎。每個有限p-群可以表示為一個powerful p-群的section。 powerful p-群也可用於研究pro-p群,因為powerful p-群提供了簡單方法去描繪p-進解析群(在p-進數上為流形的群)的特性:一個有限生成pro-p群是p-進解析的,當且僅當這個群包含一個powerful的開正規子群。這是Michel Lazard(1965)一個深刻結果的特例。 一些與阿貝爾p-群相似的性質有:若是powerful p-群,則:
一些不太像阿貝爾群的性質有:若是powerful p-群,則
參考
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve