惠勒-德威特方程式
在理論物理中,惠勒-德威特方程式(英語:Wheeler-DeWitt equation,簡稱惠-德方程)是一個描述宇宙波函數必須滿足量子重力理論的方程式。 其中一個波函數的例子是哈妥-霍金態。 簡單說,惠-德方程的數學形式為: 其中是量子化廣義相對論中的全部哈密頓約束。 廣義來說,在一個時間尺度不變性的理論中,哈密頓算符會是零。 雖然符號上,與和傳統非相對論性量子力學所用符號相同,然而詮釋上,惠勒-德威特方程式則與非相對論性量子力學中的方程式大相逕庭。不再是傳統上空間波函數的觀點(即一複數值的函數,定義於3維類空表面,且歸一化。相對地,它是個定義於時空整體的場結構的泛函。此項波函數包含了所有關於宇宙幾何以及物質內涵的所有資訊。依然是作用在希爾伯特空間中各個波函數上的一項算符,但是這個希爾伯特空間已與非相對論性量子力學中的希爾伯特空間不同,而且哈密頓算符不再決定系統的演化(所以薛定谔方程式————不再適用)。 此方程式源自於ADM形式。 相關條目
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve