A repunit is a number like 11, 111, or 1111. It only has the digit 1 in it. It is a more specific type of repdigit . The term stands for rep eated unit and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers .[ note 1]
A repunit prime is a repunit that is also a prime number . Primes that are repunits in base-2 are Mersenne primes .
Definition
The base-b repunits can be written as this where b is the base and n is the number that you are checking in whether or not it is a repunit:
R
n
(
b
)
≡
1
+
b
+
b
2
+
⋯
+
b
n
−
1
=
b
n
−
1
b
−
1
for
|
b
|
≥
2
,
n
≥
1.
{\displaystyle R_{n}^{(b)}\equiv 1+b+b^{2}+\cdots +b^{n-1}={b^{n}-1 \over {b-1}}\qquad {\mbox{for }}|b|\geq 2,n\geq 1.}
This means that the number R n (b ) is made of n copies of the digit 1 in base-b representation. The first two repunits base-b for n = 1 and n = 2 are
R
1
(
b
)
=
b
−
1
b
−
1
=
1
and
R
2
(
b
)
=
b
2
−
1
b
−
1
=
b
+
1
for
|
b
|
≥
2.
{\displaystyle R_{1}^{(b)}={b-1 \over {b-1}}=1\qquad {\text{and}}\qquad R_{2}^{(b)}={b^{2}-1 \over {b-1}}=b+1\qquad {\text{for}}\ |b|\geq 2.}
The first of repunits in base-10 are with
1 , 11 , 111 , 1111, 11111, 111111, ... (sequence A002275 in the OEIS ).
Base-2 repunits are also Mersenne numbers M n = 2n − 1. They start with
1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, ... (sequence A000225 in the OEIS ).
Factorization of decimal repunits
Prime factors that are red are "new factors" that haven't been mentioned before. Basically, the prime factor divides R n but does not divide R k for all k < n. (sequence A102380 in the OEIS )[ 2]
R 1 =
1
R 2 =
11
R 3 =
3 · 37
R 4 =
11 · 101
R 5 =
41 · 271
R 6 =
3 · 7 · 11 · 13 · 37
R 7 =
239 · 4649
R 8 =
11 · 73 · 101 · 137
R 9 =
32 · 37 · 333667
R 10 =
11 · 41 · 271 · 9091
R 11 =
21649 · 513239
R 12 =
3 · 7 · 11 · 13 · 37 · 101 · 9901
R 13 =
53 · 79 · 265371653
R 14 =
11 · 239 · 4649 · 909091
R 15 =
3 · 31 · 37 · 41 · 271 · 2906161
R 16 =
11 · 17 · 73 · 101 · 137 · 5882353
R 17 =
2071723 · 5363222357
R 18 =
32 · 7 · 11 · 13 · 19 · 37 · 52579 · 333667
R 19 =
1111111111111111111
R 20 =
11 · 41 · 101 · 271 · 3541 · 9091 · 27961
R 21 =
3 · 37 · 43 · 239 · 1933 · 4649 · 10838689
R 22 =
112 · 23 · 4093 · 8779 · 21649 · 513239
R 23 =
11111111111111111111111
R 24 =
3 · 7 · 11 · 13 · 37 · 73 · 101 · 137 · 9901 · 99990001
R 25 =
41 · 271 · 21401 · 25601 · 182521213001
R 26 =
11 · 53 · 79 · 859 · 265371653 · 1058313049
R 27 =
33 · 37 · 757 · 333667 · 440334654777631
R 28 =
11 · 29 · 101 · 239 · 281 · 4649 · 909091 · 121499449
R 29 =
3191 · 16763 · 43037 · 62003 · 77843839397
R 30 =
3 · 7 · 11 · 13 · 31 · 37 · 41 · 211 · 241 · 271 · 2161 · 9091 · 2906161
The smallest prime factors of R n for n > 1 are
11, 3, 11, 41, 3, 239, 11, 3, 11, 21649, 3, 53, 11, 3, 11, 2071723, 3, 1111111111111111111, 11, 3, 11, 11111111111111111111111, 3, 41, 11, 3, 11, 3191, 3, 2791, 11, 3, 11, 41, 3, 2028119, 11, 3, 11, 83, 3, 173, 11, 3, 11, 35121409, 3, 239, 11, ... (sequence A067063 in the OEIS )
Related pages
Notes
↑ Albert H. Beiler coined the term “repunit number” as follows:A number which consists of a repeated of a single digit is sometimes called a monodigit number, and for convenience the author has used the term “repunit number” (repeated unit) to represent monodigit numbers consisting solely of the digit 1.[ 1]
References
Further reading
Beiler, Albert H. (2013) [1964], Recreations in the Theory of Numbers: The Queen of Mathematics Entertains , Dover Recreational Math (2nd Revised ed.), New York: Dover Publications, ISBN 978-0-486-21096-4
Dickson, Leonard Eugene ; Cresse, G.H. (1999), History of the Theory of Numbers , Volume I: Divisibility and primality (2nd Reprinted ed.), Providence, RI: AMS Chelsea Publishing, ISBN 978-0-8218-1934-0
Francis, Richard L. (1988), "Mathematical Haystacks: Another Look at Repunit Numbers", The College Mathematics Journal , 19 (3): 240– 246, doi :10.1080/07468342.1988.11973120
Gunjikar, K. R. ; Kaprekar, D. R. (1939), "Theory of Demlo numbers" (PDF) , Journal of the University of Bombay , VIII (3): 3– 9
Kaprekar, D. R. (1938a), "On Wonderful Demlo numbers" , The Mathematics Student , 6 : 68, archived from the original on 2009-02-10, retrieved 2022-03-08
Kaprekar, D. R. (1938b), "Demlo numbers", J. Phys. Sci. Univ. Bombay , VII (3)
Kaprekar, D. R. (1948), Demlo numbers , Devlali, India: Khareswada
Ribenboim, Paulo (1996-02-02), The New Book of Prime Number Records , Computers and Medicine (3rd ed.), New York: Springer, ISBN 978-0-387-94457-9
Yates, Samuel (1982), Repunits and repetends , FL: Delray Beach, ISBN 978-0-9608652-0-8
Other websites
Possessing a specific set of other numbers
Expressible via specific sums