Važna posledica transcedentnosti ovog broja je činjenica da nije konstruktibilan. Ovo znači da je nemoguće izraziti π koristeći samo konačan broj celih brojeva, razlomaka, i nad njima četiri osnovne i operaciju kvadratnog korenovanja. Ovo dokazuje da nije moguće izvršiti kvadraturu kruga: nemoguće je konstruisati (koristeći samo lenjir i šestar) kvadrat čija je površina jednaka površini datog kruga. Razlog je taj da su, polazeći od jediničnog kruga i tačke na njemu, koordinate svih tačaka koje se mogu konstruisati korišćenjem lenjira i šestara konstruktibilni brojevi.
Verovatnoća da je slučajno izabran ceo broj beskvadratan je 6/π2.
U proseku, broj načina da se dati prirodan broj napiše kao zbir dva savršena kvadrata (redosled sabiraka je bitan) je π/4.
Ovde, "verovatnoća", "prosek" i "nasumičan" su uzeti u smislu granične vrednosti; tj. posmatra se verovatnoća odgovarajućeg događaja u skupu brojeva -{ {1,2, ... N} }-, a zatim uzima granična vrednost te verovatnoće kada -{N→∞}- (-{N}- je "jako veliko").
U fizici, pojava broja π u formulama je najčešće stvar dogovora i normalizacije. Na primer, korišćenjem uprošćene Plankove konstante može se izbeći pisanje broja π eksplicitno u velikom broju formula u kvantnoj mehanici. Zapravo, uprošćena varijanta je i bazičnija, a prisustvo faktora 1/2π u formulama koje koriste h može se smatrati naprosto uslovljenom uobičajenom definicijom Plankove konstante.
Treba primetiti da se, kako je za svaku Funkciju gustine raspodele verovatnoće -{f(x)}-, pomoću gornjih formula može dobiti još integralnih formula za π.
Zanimljiva empirijska aproksimacija broja π zasnovana je na problemu Bufonove igle. Posmatrajmo opit u kojem se igla dužine -{L}- baca na ravan na kojoj su označene dve paralelne prave na međusobnom rastojanju -{S}- (gde je -{S}->-{L}-). Ako se igla na slučajan način baci veliki broj -{(n)}- puta, od kojih se x puta zaustavi tako da seče jednu od pravih, onda približnu vrednost broja π možemo dobiti korišćenjem formule
Historija
Simbol "π" za Arhimedovu konstantu je prvi put uveo 1706. godine matematičar Vilijam Džouns kada je objavio Novi uvod u matematiku (-{A New Introduction to Mathematics}-), mada je isti simbol još ranije korišćen da naznači obim kruga.
Ova oznaka postala je standardna nakon što ju je usvojio Leonard Ojler. U oba slučaja, 'π' je prvo slovo reči περιμετρος (perimetros), što znači 'meriti okolo' na grčkom jeziku.
Zbog transcedentne prirode broja π, ne postoje prikladni zatvoreni izrazi za π. Stoga, numerička izračunavanja moraju koristiti približne vrednosti (aproksimacije) broja. Za puno potreba, 3.14 ili 22/7 je dovoljno blizu, iako inženjeri često koriste 3.1416 ili 3.14159 (5, odnosno 6 značajnih cifara) radi veće preciznosti. Aproksimacije 22/7 i 355/113, sa 3 i 7 značajnih brojki, se dobijaju iz jednostavnog razvoja π u verižni razlomak.
Pored toga, sledeća numerička formula daje aproksimaciju π sa 9 ispravnih cifara:
Kineski matematičar Liu Hui je izračunao π do 3.141014 (tačno do 3 decimalna mesta) 263. godine i predložio da je 3.14 dobra aproksimacija.
Indijski matematičar i astronom Arjabhata dao je preciznu aproksimaciju za π. On je napisao: "Dodaj četiri na sto, pomnoži sa osam, a onda dodaj šezdesetdvehiljade. Rezultat je približno jednak obimu kruga prečnika dvadesethiljada. Ovim pravilom dat je odnos između obima i prečnika." Drugim rečima, (4+100)×8 + 62000 je obim kruga prečnika 20000. Ovo daje vrednost π = 62832/20000 = 3.1416, tačnu kada se zaokruži na 4 decimalna mesta.
Kineski matematičar i astronom Zu Čongži je izračunao π do 3.1415926–3.1415927, i dao dve aproksimacije: 355/113 i 22/7 (u 5. veku).
Iranski matematičar i astronom Gijat ad-din Džamšid Kašani (1350–1439) je izračunao π do 9 cifara u brojnom sistemu sa osnovom 60, što je ekvivalentno sa 16 decimalnih mesta kao:
2 π = 6.2831853071795865
Nemački matematičar Ludolf van Cojlen (oko 1600) je izračunao prvih 35 decimala. Bio je tako ponosan na svoje dostignuće da ih je dao urezati u svoj nadgrobni spomenik.
Slovenački matematičar Jurij Vega je 1789. izračunao prvih 140 decimala, od kojih je prvih 137 bilo tačno i držao je svetski rekord 52 godine—sve do 1841—kada je Vilijam Raderford izračunao 208 decimalnih mesta, od kojih su prva 152 bila tačna. Vega je poboljšao formulu Džona Mejčina iz 1706; njegov metod se spominje i danas.
Nijedna od gore datih formula ne može da posluži kao efikasni način nalaženja približnih vrednosti broja π. Za brza izračunavanja, mogu se koristiti formule poput Mejčinove:
Prvih milion cifara brojeva π i 1/π su dostupni na Projektu Gutenberg (vidi spoljne veze dole). Trenutni rekord (decembar 2002) ima 1 241 100 000 000 cifara, koje su izračunate u septembru iste godine na 64-čvornom Hitačisuperračunaru sa jednim terabajtom radne memorije, koji vrši 2 biliona operacija u sekundi, skoro duplo više od računara korišćenog za prethodni rekord (206 milijardi cifara). Korišćene su sledeće formule slične Mejčinovoj:
Ove približne vrednosti imaju toliko puno cifara da više nemaju nikakvog praktičnog značaja, izuzev za testiranje novih superračunara i (očigledno) za ustanovljavanje novih rekorda u izračunavanju broja π.
Na računarima sa Majkrosoft Vindousoperativnim sistemom, program PiFast može se koristiti za brzo izračunavanje velikog broja cifara. Najveći broj cifara broja π izračunat na kućnom računaru je 25 000 000 000, za koje je PiFast-u trebalo 17 dana.
Otvorena pitanja
Otvoreno pitanje o ovom broju koje naviše pritiska jeste da li je π normalan broj—da li se ma koji blok cifara javlja u njegovom decimalnom razvoju upravo onoliko često koliko bi se statistički moglo očekivati ako bi se cifre proizvodile potpuno "nasumično". Ovo mora da bude tačno u bilo kojoj osnovi, a ne samo u dekadnom sistemu (osnovi 10). Sadašnje znanje u ovom smeru je veoma oskudno; na primer, ne zna se čak ni koje se od cifara (0,...,9) pojavljuju beskonačno često u decimalnom razvoju ovog broja.
Bejli i Krendal su pokazali 2000. godine da postojanje gore pomenute Bejli-Borvajn-Plufe formule i sličnih formula povlači da se tvrđenje o normalnosti broja π i raznih drugih konstanti u osnovi 2 može svesti na izvesnu razumnu pretpostavku u Teoriji haosa. Za pojedinosti, pogledajte gore navedeni Bejlijev sajt.
Takođe nije poznato da li su π i ealgebarski nezavisni, tj. da li postoji netrivijalna polinomska relacija između ova dva broja sa racionalnim koeficijentima.
Džon Harison (1693–1776) je stvorio muzički sistem izveden iz π. Ovaj Lusi tjuning sistem, (zbog jedinstvenih matematičkih osobina broja π) može da oslika sve muzičke intervale, harmonije i harmonike. Ovo sugeriše da bi se korišćenjem π mogao dobiti precizniji model za analizu kako muzičkih, tako i drugih harmonika u vibrirajućim sistemima.
Priroda broja π
U ne-euklidskoj geometriji, zbir uglova trougla može da bude manji ili veći od π radijana, a odnos obima kruga i njegovog prečnika može se takođe razlikovati od π. Ovo ne menja njegovu definiciju, ali utiče na mnoge formule gde se π pojavljuje. Pa tako, posebno, oblik univerzuma ne utiče na π; π nije fizička nego matematička konstanta, definisana nezavisno od ma kakvih fizičkih merenja. Razlog zašto se π pojavljuje tako često u fizici je jednostavno zato što je podesan u mnogim fizičkim modelima.
Posmatrajmo, kao primer, Kulonov zakon:
.
Ovde, je naprosto površina lopte poluprečnika -{r}-. U ovoj formi, ovo je pogodan način opisivanja inverzne kvadratne veze između sile i rastojanja -{r}- od tačkastog izvora. Naravno, bilo bi moguće da se ovaj zakon opiše na druge, ali manje zgodne—ili u nekim slučajevima zgodnije načine. Ako koristimo Plankovo naelektrisanje, Kulonov se zakon može opisati kao čime se uklanja potreba za π.
Postoji celo polje humorističkog, ali i ozbiljnog izučavanja koje uključuje korišćenje mnemonika za lakše pamćenje cifara π i zove se pifilologija. Pogledajte Pi mnemonike za primere na engleskom jeziku.
Štaviše, mnogi ljudi govore i o "pi sati" (3:14:15 je malo manje od pi sati; 3:08:30 bi bilo najbliže broju π sati posle podneva ili ponoći u celim sekundama).
Još jedan primer matematičkog humora je sledeća aproksimacija π: Uzmite broj "1234", zamenite mesta prvim dvema i poslednjim dvema ciframa, tako da broj postaje "2143". Podelite taj broj sa "dva-dva" (22, pa je 2143/22 = 97.40909...). Uzmite dvo-kvadratni koren (četvrti koren) od ovog broja. Konačan rezultat je izuzetno blizu π: 3.14159265.
Arndt, Jörg; Haenel, Christoph (2006). Pi Unleashed. Springer-Verlag. ISBN978-3-540-66572-4. Pristupljeno 2013-06-05. English translation by Catriona and David Lischka.
Borwein, Jonathan; Borwein, Peter (1987). Pi and the AGM: a Study in Analytic Number Theory and Computational Complexity. Wiley. ISBN978-0-471-31515-5.
Eymard, Pierre; Lafon, Jean Pierre (1999). The Number Pi. American Mathematical Society. ISBN978-0-8218-3246-2., English translation by Stephen Wilson.
Reitwiesner, George (1950). „An ENIAC Determination of pi and e to 2000 Decimal Places”. Mathematical Tables and Other Aids to Computation4 (29): 11–15. DOI:10.2307/2002695. ISSN0891-6837.
Borwein, Jonathan; Borwein, Peter (1984). „The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions”. SIAM Review26: 351–365. DOI:10.1137/1026073.
Chudnovsky, David V. and Chudnovsky, Gregory V., "Approximations and Complex Multiplication According to Ramanujan", in Ramanujan Revisited (G.E. Andrews et al. Eds), Academic Press, 1988, pp 375–396, 468–472
Cox, David A., "The Arithmetic-Geometric Mean of Gauss", L' Ensignement Mathematique, 30(1984) 275–330
Delahaye, Jean-Paul, "Le Fascinant Nombre Pi", Paris: Bibliothèque Pour la Science (1997) ISBN2902918259
Engels, Hermann (1977). „Quadrature of the Circle in Ancient Egypt”. Historia Mathematica4: 137–140. DOI:10.1016/0315-0860(77)90104-5.
Euler, Leonhard, "On the Use of the Discovered Fractions to Sum Infinite Series", in Introduction to Analysis of the Infinite. Book I, translated from the Latin by J. D. Blanton, Springer-Verlag, 1964, pp 137–153
Heath, T. L., The Works of Archimedes, Cambridge, 1897; reprinted in The Works of Archimedes with The Method of Archimedes, Dover, 1953, pp 91–98
Huygens, Christiaan, "De Circuli Magnitudine Inventa", Christiani Hugenii Opera Varia I, Leiden 1724, pp 384–388
Lay-Yong, Lam; Tian-Se, Ang (1986). „Circle Measurements in Ancient China”. Historia Mathematica13: 325–340. DOI:10.1016/0315-0860(86)90055-8.
Matar, K. Mukunda; Rajagonal, C. (1944). „On the Hindu Quadrature of the Circle" (Appendix by K. Balagangadharan)”. Journal of the Bombay Branch of the Royal Asiatic Society20: 77–82.
Niven, Ivan, "A Simple Proof that pi Is Irrational", Bulletin of the American Mathematical Society, 53:7 (July 1947), 507
Ramanujan, Srinivasa, "Modular Equations and Approximations to π", Quarterly Journal of Pure and Applied Mathematics, XLV, 1914, 350–372. Reprinted in G.H. Hardy, P.V. Seshu Aiyar, and B. M. Wilson (eds), Srinivasa Ramanujan: Collected Papers, 1927 (reprinted 2000), pp 23–29
Shanks, William, Contributions to Mathematics Chiefly of the Rectification of the Circle to 607 Places of Decimals, 1853, pp. i–xvi, 10
Tropfke, Johannes, Geschichte Der Elementar-Mathematik in Systematischer Darstellung (The history of elementary mathematics), BiblioBazaar, 2009 (reprint), ISBN978-1-113-08573-3
Viete, Francois, Variorum de Rebus Mathematicis Reponsorum Liber VII. F. Viete, Opera Mathematica (reprint), Georg Olms Verlag, 1970, pp 398–401, 436–446
Wagon, Stan, "Is Pi Normal?", The Mathematical Intelligencer, 7:3(1985) 65–67
Wallis, John, Arithmetica Infinitorum, sive Nova Methodus Inquirendi in Curvilineorum Quadratum, aliaque difficiliora Matheseos Problemata, Oxford 1655–6. Reprinted in vol. 1 (pp 357–478) of Opera Mathematica, Oxford 1693
Zebrowski, Ernest, A History of the Circle: Mathematical Reasoning and the Physical Universe, Rutgers University Press, 1999, ISBN978-0-8135-2898-4