ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ
ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਆਇਸੋਲੇਟਡ ਸਿਸਟਮ ਦੀ ਕੁੱਲ ਐਨਟ੍ਰੌਪੀ ਵਕਤ ਪਾ ਕੇ ਸਿਰਫ ਵੱਧ ਸਕਦੀ ਹੈ ਜਾਂ ਅਜਿਹੇ ਆਦਰਸ਼ ਮਾਮਲਿਆਂ ਅੰਦਰ ਸਥਿਰ ਰਹਿ ਸਕਦੀ ਹੈ ਜਿੱਥੇ ਸਿਸਟਮ ਕਿਸੇ ਇੱਕਸਾਰ ਅਵਸਥਾ (ਸੰਤੁਲਨ) ਵਿੱਚ ਹੋਵੇ ਜਾਂ ਕਿਸੇ ਰਿਵਰਸੀਬਲ ਪ੍ਰੋਸੈੱਸ ਅਧੀਨ ਹੋਵੇ । ਐਨਟ੍ਰੌਪੀ ਵਿੱਚ ਹੋ ਰਿਹਾ ਵਾਧਾ ਕੁਦਰਤੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ, ਅਤੇ ਭਵਿੱਖ ਅਤੇ ਭੂਤਕਾਲ ਦਰਮਿਆਨ ਅਸਮਰੂਪਤਾ ਲਈ ਜਿੰਮੇਵਾਰ ਹੁੰਦੀ ਹੈ।
ਜਾਣ-ਪਛਾਣਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਸਾਰਿਆਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸਿਸਟਮਾਂ ਨਾਲ ਸਬੰਧਤ ਅੰਦਰੂਨੀ ਊਰਜਾ ਦੇ ਮੁੱਢਲੀ ਪਰਿਭਾਸ਼ਾ ਮੁੱਹਈਆ ਕਰਵਾਉਂਦਾ ਹੈ, ਅਤੇ ਊਰਜਾ ਦੀ ਸੁਰੱਖਿਅਤਾ ਦਾ ਨਿਯਮ ਬਿਆਨ ਕਰਦਾ ਹੈ।[1][2] ਦੂਜਾ ਨਿਯਮ ਕੁਦਰਤੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਦੀ ਦਿਸ਼ਾ ਨਾਲ ਸਬੰਧ ਰੱਖਦਾ ਹੈ[3] ਇਹ ਦਾਅਵਾ ਕਰਦਾ ਹੈ ਕਿ ਕੋਈ ਕੁਦਰਤੀ ਪ੍ਰਕ੍ਰਿਆ ਸਿਰਫ ਇੱਕੋ ਸਮਝ ਵਿੱਚ ਚਲਦੀ ਹੈ, ਅਤੇ ਰਿਵਰਸੀਬਲ ਨਹੀਂ ਹੁੰਦੀ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਤਾਪ ਹਮੇਸ਼ਾਂ ਗਰਮ ਤੋਂ ਠੰਢੀਆਂ ਚੀਜ਼ਾਂ ਵੱਲ ਤੁਰੰਤ ਪ੍ਰਵਾਹ ਕਰਦਾ ਹੈ, ਅਤੇ ਕਦੇ ਵੀ ਉਲਟ ਨਹੀਂ ਚਲਦਾ, ਜਦੋਂ ਤੱਕ ਸਿਸਟਮ ਉੱਤੇ ਬਾਹਰੀ ਕੰਮ ਨਾ ਕੀਤਾ ਜਾਵੇ । ਇਸਦੀ ਅਜੋਕੀ ਪਰਿਭਾਸ਼ਾ ਐਨਟ੍ਰੌਪੀ ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਹੈ।[4][5] ਕਿਸੇ ਕਲਪਿਤ ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਅੰਦਰ, ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ (dS) ਵਿੱਚ ਇੱਕ ਅਤਿਸੂਖਮ ਵਾਧਾ ਸਿਸਟਮ ਅਤੇ ਗਰਮੀ ਸਪਲਾਈ ਕਰਨ ਵਾਲੇ ਵਾਤਾਵਰਨ ਦੇ ਸਾਂਝੇ ਤਾਪਮਾਨ (T) ਦੁਆਰਾ ਵੰਡੀ ਹੋਈ ਕਿਸੇ ਕਲੋਜ਼ਡ ਸਿਸਟਮ ਦੀ ਗਰਮੀ (δQ) ਦੇ ਅਤਿਸੂਖਮ ਸੰਚਾਰ ਦੇ ਨਤੀਜੇ ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਹੁੰਦਾ ਹੈ।:[6] ਗਰਮੀ (δ) ਦੀਆਂ ਅਤਿਸੂਖਮ ਮਾਤਰਾਵਾਂ ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਦੀਆਂ ਅਤਿਸੂਖਮ ਮਾਤ੍ਰਾਵਾਂ (d) ਵਾਸਤੇ ਵੱਖਰੀਆਂ ਵੱਖਰੀਆਂ ਚਿੰਨ-ਧਾਰਨਾਵਾਂ ਵਰਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ ਕਿਉਂਕਿ ਐਨਟ੍ਰੌਪੀ ਅਵਸਥਾ ਦਾ ਫੰਕਸ਼ਨ ਹੁੰਦੀ ਹੈ, ਜਦੋਂਕਿ ਹੀਟ, ਕੰਮ (ਵਰਕ) ਵਾਂਗ ਇੰਝ ਨਹੀਂ ਹੁੰਦੀ । ਵਾਤਾਵਰਨ ਨਾਲ ਪਦਾਰਥ ਦਾ ਵਟਾਂਦ੍ਰਾ ਕਰੇ ਬਗੈਰ ਕਿਸੇ ਵਾਸਤਵਿਕ ਸੰਭਵ ਅਤਿਸੂਖਮ ਪ੍ਰਕ੍ਰਿਆ ਵਾਸਤੇ, ਦੂਜਾ ਨਿਯਮ ਮੰਗ ਕਰਦਾ ਹੈ ਕਿ ਸਿਸਟਮ ਐਨਟ੍ਰੌਪੀ ਵਿੱਚ ਵਾਧਾ ਹੇਠਾਂ ਲਿਖੇ ਨਾਲੋਂ ਜਿਆਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ: ਅਜਿਹਾ ਇਸ ਲਈ ਹੁੰਦਾ ਹੈ ਕਿਉਂਕਿ ਇਸ ਮਾਮਲੇ ਲਈ ਇੱਕ ਸਰਵ ਸਧਾਰਨ ਪ੍ਰਕ੍ਰਿਆ ਵਿੱਚ ਸਿਸਟਮ ਉੱਤੇ ਉਸਦੇ ਵਾਤਾਵਰਨ ਦੁਆਰਾ ਕੀਤਾ ਜਾ ਰਿਹਾ ਕੰਮ ਸ਼ਾਮਿਲ ਹੋ ਸਕਦਾ ਹੈ, ਜੋ ਜਰੂਰ ਹੀ ਸਿਸਟਮ ਦੇ ਅੰਦਰ ਰਗੜ ਜਾਂ ਵਿਸਕਸ ਪ੍ਰਭਾਵ ਰੱਖਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਅਤੇ ਕਿਉਂਕਿ ਹੀਟ ਟ੍ਰਾਂਸਫਰ ਦਰਅਸਲ ਸਿਰਫ ਗੈਰ-ਪਲਟਣਯੋਗ ਤੌਰ ਤੇ ਹੀ ਹੁੰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਤਾਪਮਾਨ ਦੇ ਫਰਕ ਰਾਹੀਂ ਪ੍ਰੇਰਿਤ ਹੁੰਦੀ ਹੈ।[7][8] ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਜ਼ੀਰੋਵਾਂ ਨਿਯਮ ਅਪਣੇ ਆਮ ਸੰਖੇਪ ਕਥਨ ਵਿੱਚ ਇਸ ਪਛਾਣ ਦੀ ਪ੍ਰਵਾਨਗੀ ਦਿੰਦਾ ਹੈ ਕਿ ਥਰਮਲ-ਸੰਤੁਲਨ ਦੇ ਕਿਸੇ ਸਬੰਧ ਅੰਦਰ ਦੋ ਵਸਤੂਆਂ ਇੱਕੋ ਜਿਹਾ ਤਾਪਮਾਨ ਰੱਖਦੀਆਂ ਹਨ, ਖਾਸ ਕਰਕੇ ਕੋਈ ਟੈਸਟ ਅਧੀਨ ਵਸਤੂ ਕਿਸੇ ਇਸ਼ਾਰੀਆ ਥਰਮੋਮੀਟ੍ਰਿਕ ਵਸਤੂ ਦੇ ਤੌਰ ਤੇ ਇੱਕੋ ਜਿਹਾ ਤਾਪਮਾਨ ਰੱਖਦੀ ਹੈ।[9] ਕਿਸੇ ਦੂਜੀ ਵਸਤੂ ਨਾਲ ਥਰਮਲ ਸੰਤੁਲਨ ਅੰਦਰ ਕਿਸੇ ਵਸਤੂ ਵਾਸਤੇ, ਅਨਿਸ਼ਚਿਤ ਤੌਰ ਤੇ ਕਈ ਅਨੁਭਵ-ਸਿੱਧ ਤਾਪਮਾਨ ਪੈਮਾਨੇ ਹੁੰਦੇ ਹਨ, ਜੋ ਆਮ ਤੌਰ ਤੇ ਕਿਸੇ ਵਿਸ਼ੇਸ਼ ਇਸ਼ਾਰੀਆ ਥਰਮੋਮੀਟ੍ਰਿਕ ਵਸਤੂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੇ ਹੋਏ ਹਨ। ਦੂਜਾ ਨਿਯਮ ਇੱਕ ਵੱਖਰੀ ਕੀਤੀ ਗਈ ਤਾਪਮਾਨ ਸਕੇਲ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ, ਜੋ ਇੱਕ ਸ਼ੁੱਧ (ਐਬਸਲਿਊਟ) ਥਰਮੋਡਾਇਨਾਮਿਕ ਤਾਪਮਾਨ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੀ ਹੈ, ਜੋ ਕਿਸੇ ਵੀ ਵਿਸ਼ੇਸ਼ ਥਰਮੋਮੀਟ੍ਰਿਕ ਵਸਤੂ ਦੀਆਂ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦੀ ਹੈ।[10][11] ਨਿਯਮ ਦੇ ਵਿਭਿੰਨ ਕਥਨਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਦੂਜਾ ਨਿਯਮ ਕਈ ਖਾਸ ਤਰੀਕਿਆਂ ਵਿੱਚ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ,[12] ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਸਭ ਤੋਂ ਜਿਆਦਾ ਮੁੱਖ ਕਲਾਸੀਕਲ ਕਥਨ[13] ਇਹ ਹਨ; ਰਡਲਫ ਕਲੀਓਸੀਅਸ (1854) ਦੁਆਰਾ ਕਥਨ, ਲੌਰਡ ਕੈਲਵਿਨ (1851) ਦੁਆਰਾ ਕਥਨ, ਅਤੇ ਕੰਸਟੈਂਟਿਨ ਕੈਰਾਥੀਓਡੋਰੀ (1909) ਦੁਆਰਾ ਸਵੈ-ਸਿੱਧਾਤਮਿਕ ਥਰਮੋਡਾਇਨਾਮਿਕ ਅੰਦਰ ਕਥਨ । ਇਹ ਕਥਨ ਕੁੱਝ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਦੀ ਅਸੰਭਵਤਾ ਦਾ ਹਵਾਲਾ ਦਿੰਦੇ ਹੋਏ ਆਮ ਭੌਤਿਕੀ ਨਿਯਮਾਂ ਅੰਦਰ ਨਿਯਮ ਦਰਸਾਉਂਦੇ ਹਨ। ਕਲਾਓਸੀਅਸ ਅਤੇ ਕੈਲਵਿਨ ਕਥਨ ਇੱਕਸਮਾਨ ਹੁੰਦੇ ਸਾਬਤ ਕੀਤੇ ਗਏ ਹਨ।[14] ਕਾਰਨੌਟ ਦਾ ਸਿਧਾਂਤਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੀ ਇਤਿਹਾਸਿਕ ਜੜ ਕਾਰਨੌਟ ਦੇ ਸਿਧਾਂਤ ਵਿੱਚ ਸੀ। ਇਹ ਕਿਸੇ ਕਾਰਨੌਟ ਹੀਟ ਇੰਜਣ ਦੇ ਇੱਕ ਚੱਕਰ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦਾ ਹੈ, ਜੋ ਕਲਪਨਿਕ ਤੌਰ ਤੇ ਕੁਆਸੀ-ਸਟੈਟਿਕ ਦੇ ਤੌਰ ਤੇ ਜਾਣੇ ਜਾਂਦੇ ਅੱਤ ਧੀਮੇਪਣ ਦੇ ਹੱਦਾਤਮਿਕ ਮੋਡ ਵਿੱਚ ਇਸਲਈ ਓਪਰੇਟ ਕਰਦਾ ਹੈ, ਤਾਂ ਜੋ ਗਰਮੀ ਅਤੇ ਕੰਮ ਵਟਾਂਦਰੇ ਅਜਿਹੇ ਉੱਪ-ਸਿਸਟਮਾਂ ਦਰਮਿਆਨ ਹੀ ਹੋਣ ਜੋ ਹਮੇਸ਼ਾਂ ਹੀ ਅਪਣੀਆਂ ਖੁਦ ਦੀਆਂ ਅੰਦਰੂਨੀ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਕਾਰਨੌਟ ਇੱਜਣ ਉਹਨਾਂ ਇੰਜਨੀਅਰਾਂ ਦੀ ਵਿਸ਼ੇਸ਼ ਦਿਲਚਸਪੀ ਦਾ ਇੱਕ ਆਦਰਸ਼ੱਧ ਕੀਤਾ ਹੋਇਆ ਯੰਤਰ ਰਿਹਾ ਹੈ ਜਿਹਨਾਂ ਦਾ ਵਾਹ ਹੀਟ ਇੰਜਣਾਂ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਨਾਲ ਪੈਂਦਾ ਹੈ। ਕਾਰਨੌਟ ਦਾ ਸਿਧਾਂਤ ਕਾਰਨੌਟ ਰਾਹੀਂ ਉਸ ਵੇਲੇ ਪਛਾਣਿਆ ਗਿਆ ਸੀ ਜਦੋਂ ਹੀਟ ਬਾਬਤ ਕੇਲੌਰਿਕ ਥਿਊਰੀ ਗੰਭੀਰਤਾ ਨਾਲ ਵਿਚਾਰੀ ਗਈ ਸੀ, ਜਿਸਤੋਂ ਬਾਦ ਵਿੱਚ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦਾ ਪਹਿਲਾ ਨਿਯਮ ਪਛਾਣਿਆ ਗਿਆ ਸੀ, ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਦੇ ਸੰਕਲਪ ਦੀ ਗਣਿਤਿਕ ਲਿਖਾਵਟ ਵੀ ਬਾਦ ਵਿੱਚ ਬਣੀ ਸੀ। ਪਹਿਲੇ ਨਿਯਮ ਦੀ ਰੋਸ਼ਨੀ ਵਿੱਚ ਵਿਆਖਿਅਤ ਕਿਤਾ ਜਾਣ ਤੇ, ਇਹ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੇ ਭੌਤਿਕੀ ਤੌਰ ਤੇ ਬਰਾਬਰ ਹੋ ਜਾਂਦਾ ਹੈ, ਅਤੇ ਅੱਜ ਤੱਕ ਲਾਗੂ ਰਿਹਾ ਹੈ। ਇਹ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ;
ਕਲਾਓਸੀਅਸ ਕਥਨਜਰਮਨ ਵਿਗਿਆਨਿਕ ਰਡਲਫ ਕਲਾਓਸੀਅਸ ਨੇ ਗਰਮੀ ਟ੍ਰਾਂਸਫਰ ਅਤੇ ਕੰਮ ਦਰਮਿਆਨ ਸਬੰਧ ਜਾਂਚ ਕੇ 1850 ਵਿੱਚ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜਾ ਨਿਯਮ ਲਈ ਬੁਨਿਆਦ ਦੀ ਪ੍ਰੇਰਣਾ ਦਿੱਤੀ।[22] ਦੂਜੇ ਨਿਯਮ ਦੀ ਉਸਦੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ, ਜੋ ਜਰਮਨੀ ਵਿੱਚ 1854 ਵਿੱਚ ਛਾਪੀ ਗਈ ਸੀ, ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਦੇ ਤੌਰ ਤੇ ਜਾਣੀ ਜਾਂਦੀ ਹੈ:
ਕਲਾਓਸੀਅਸ ਦੁਆਰਾ ਦਿੱਤਾ ਗਿਆ ਕਥਨ ਹੀਟ ਦੇ ਲਾਂਘੇ ਦੀ ਧਾਰਨਾ ਵਰਤਦਾ ਹੈ। ਜਿਵੇਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਚਰਚਾਵਾਂ ਵਿੱਚ ਆਮ ਹੁੰਦਾ ਹੈ, ਇਸਦਾ ਅਰਥ ਐਨਰਜੀ ਅਤੇ ਹੀਟ ਦਾ ਸ਼ੁੱਧ ਸੰਚਾਰ ਹੋਇਆ, ਜੋ ਇੱਕ ਰਸਤੇ ਅਤੇ ਦੂਜੇ ਰਸਤੇ ਤੋਂ ਯੋਗਦਾਨਾਤਮਿਕ ਸੰਚਾਰ ਵੱਲ ਇਸ਼ਾਰਾ ਨਹੀਂ ਕਰਦਾ । ਹੀਟ (ਗਰਮੀ) ਠੰਡੇ ਖੇਤਰਾਂ ਤੋਂ ਗਰਮ ਖੇਤਰਾਂ ਵੱਲ ਸਿਸਟਮ ਉੱਤੇ ਬਾਹਰੀ ਤੌਰ ਤੇ ਕੰਮ ਕੀਤੇ ਬਗੈਰ ਨਹੀਂ ਵਹਿ ਸਕਦੀ, ਜੋ ਰੈਫਰਿਜ੍ਰੇਸ਼ਨ ਦੇ ਸਧਾਰਨ ਅਨੁਭਵ ਤੋਂ ਸਪੱਸ਼ਟ ਸਾਬਤ ਹੁੰਦਾ ਹੈ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਗਰਮੀ ਠੰਢ ਤੋਂ ਗਰਮੀ ਵੱਲ ਪ੍ਰਵਾਹਿਤ ਹੁੰਦੀ ਹੈ, ਪਰ ਸਿਰਫ ਉਦੋਂ ਜਦੋਂ ਰੈਫ੍ਰਿਜ੍ਰੇਸ਼ਨ ਸਿਸਟਮ ਵਰਗਾ ਕੋਈ ਬਾਹਰੀ ਕਾਰਕ (ਏਜੰਟ) ਅਜਿਹਾ ਕਰਨ ਲਈ ਫੋਰਸ ਲਗਾਵੇ । ਕੈਲਵਿਨ ਕਥਨਲੌਰਡ ਕੈਲਵਿਨ ਨੇ ਦੂਜੇ ਨਿਯਮ ਨੂੰ ਇਸਤਰਾਂ ਲਿਖਿਆ ਹੈ; ਨਿਰਜੀਵ ਪਦਾਰਥਕ ਕਾਰਕ (ਏਜੰਸੀ) ਦੇ ਅਰਥਾਂ ਦੁਆਰਾ, ਵਾਤਾਵਰਨ ਦੀਆਂ ਵਸਤੂਆਂ ਦੇ ਤਾਪਮਾਨ ਤੋਂ ਥੱਲੇ ਠੰਢਾ ਕਰਕੇ ਪਦਾਰਥ ਦੇ ਕਿਸੇ ਵੀ ਹਿੱਸੇ (ਪੋਰਸ਼ਨ) ਤੋਂ ਮਕੈਨੀਕਲ ਪ੍ਰਭਾਵ ਬਣਾਉਣਾ ਅਸੰਭਵ ਹੈ।[23] ਕਲਾਓਸੀਅਸ ਅਤੇ ਕੈਲਵਿਨ ਕਥਨਾਂ ਦੀ ਸਮਾਨਤਾ![]() ਮੰਨ ਲਓ ਕੈਲਵਿਨ ਦੀ ਸਟੇਟਮੈਂਟ ਨੂੰ ਉਲੰਘਣਾ ਕਰਨ ਵਾਲਾ ਕੋਈ ਇੰਜਣ ਹੈ: ਯਾਨਿ ਕਿ, ਜੋ ਹੀਟ ਪ੍ਰਾਪਤ ਕਰਦਾ ਹੋਵੇ ਅਤੇ ਇਸਨੂੰ ਹੋਰ ਨਤੀਜੇ ਬਗੈਰ ਇੱਕ ਚੱਕਰਾਕਾਰ ਅੰਦਾਜ਼ ਵਿੱਚ ਪੂਰੀ ਤਰਾਂ ਕੰਮ ਵਿੱਚ ਤਬਦੀਲ ਕਰਦਾ ਹੋਵੇ । ਹੁਣ ਇਸਦਾ ਤਸਵੀਰ ਵਿੱਚ ਦੱਸੇ ਮੁਤਾਬਿਕ ਇੱਕ ਉਲਟੇ ਕਾਰਨੌਟ ਇੰਜਣ ਨਾਲ ਮੇਲ ਕਰੋ (ਪੇਅਰ ਬਣਾਓ)। ਦੋ ਇੰਜਣਾਂ ਨਾਲ ਇਸ ਨਵੀਨ ਬਣਾਏ ਗਏ ਇੰਜਣ ਦਾ ਸ਼ੁੱਧ ਅਤੇ ਨਿਰੋਲ ਅਸਰ ਠੰਢੇ ਸੁਰੱਖਿਅਕ ਤੋਂ ਗਰਮ ਵੱਲ ਹੀਟ ਟ੍ਰਾਂਸਫਰ ਕਰਦਾ ਹੈ, ਜੋ ਕਲਾਓਸੀਅਸ ਦੀ ਸਟੇਟਮੈਂਟ ਦੀ ਉਲੰਘਣਾ ਹੈ। ਇਸਤਰਾਂ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ ਦੀ ਇੱਕ ਉਲੰਘਣਾ ਤੋਂ ਭਾਵ ਹੈ ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਦੀ ਵੀ ਉਲੰਘਣਾ, ਯਾਨਿ ਕਿ, ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਤੋਂ ਭਾਵ ਹੈ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ । ਇੱਕ ਮਿਲਦੇ ਜੁਲਦੇ ਅੰਦਾਜ ਵਿੱਚ ਹੀ ਅਸੀਂ ਸਾਬਤ ਕਰ ਸਕਦੇ ਹਾਂ ਕਿ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ ਤੋਂ ਭਾਵ ਕਲਾਓਸੀਅਸ ਸਟੇਟਮੈਂਟ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸ ਕਾਰਨ ਦੋਵੇਂ ਇੱਕ ਸਮਾਨ ਹੁੰਦੀਆਂ ਹਨ। ਪਲੈਂਕ ਦੀ ਪ੍ਰੋਪੋਜ਼ੀਸ਼ਨਪਲੈਂਕ ਨੇ ਅਨੁਭਵ ਤੋਂ ਸਿੱਧੇ ਤੌਰ ਤੇ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਅੱਗੇ ਲਿਖਿਆ ਕਥਨ ਪੇਸ਼ ਕੀਤਾ । ਇਹ ਕਦੇ ਕਦੇ ਦੂਜੇ ਨਿਯਮ ਦੀ ਉਸਦੀ ਸਟੇਟਮੈਂਟ ਦੇ ਤੌਰ ਤੇ ਵੀ ਪੁਕਾਰੀ ਜਾਂਦੀ ਹੈ, ਪਰ ਉਸਨੇ ਇਸ ਵੱਲ ਦੂਜੇ ਨਿਯਮ ਦੀ ਵਿਓਂਤਬੰਦੀ ਵਾਸਤੇ ਇੱਕ ਸ਼ੁਰੂਆਤੀ ਬਿੰਦੂ ਦੇ ਤੌਰ ਤੇ ਇਸ਼ਾਰਾ ਕੀਤਾ । ਕੈਲਵਿਨ ਦੇ ਕਥਨ ਅਤੇ ਪਲੈਂਕ ਦੀ ਪ੍ਰੋਪੋਜ਼ੀਸ਼ਨ ਦਰਮਿਆਨ ਸਬੰਧਟੈਕਸਟਬੁਕਾਂ ਅੰਦਰ ਇਹ ਲੱਗਪਗ ਇਸ ਨੂੰ ਨਿਯਮ ਦੀ ’’ਕੈਲਵਿਨ-ਪਲੈਂਕ ਸਟੇਟਮੈਂਟ’’ ਬਾਰੇ ਕਹਿਣ ਦਾ ਰਿਵਾਜ਼ ਹੀ ਹੋ ਗਿਆ ਹੈ, ਜਿਵੇਂ ਤੇਰ ਹਾਰ ਅਤੇ ਵਰਜੀਲੈਂਡ ਦੀਆਂ ਪੁਸਤਕਾਂ ਅੰਦਰ ਉਦਾਹਰਨਾਂ ਲਈ ਹੈ।[26] ਇੱਕ ਪੁਸਤਕ ਪਲੈਂਕ ਦੇ ਕਥਨ ਵਰਗੀ ਕੋਈ ਸਟੇਟਮੈਂਟ ਦਿੰਦੀ ਹੈ, ਪਰ ਪਲੈਂਕ ਦਾ ਨਾਮ ਲਏ ਬਗੈਰ ਕੈਲਵਿਨ ਨੂੰ ਇਸਦਾ ਸ਼੍ਰੇਅ ਦਿੰਦੀ ਹੈ।[27] ਇੱਕ ਮੋਨੋਗ੍ਰਾਫ ਪਲੈਂਕ ਦੀ ਪ੍ਰੋਪੋਜ਼ੀਸ਼ਨ ਨੂੰ ਕੈਲਵਿਨ-ਪਲੈਂਕ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੇ ਤੌਰ ਤੇ ਬਿਆਨ ਕਰਦਾ ਹੈ, ਜਿਸਦਾ ਲੇਖਕ ਕੈਲਵਿਨ ਲਿਖਿਆ ਗਿਆ ਹੈ, ਬੇਸ਼ੱਕ ਇਹ ਸਹੀ ਤੌਰ ਤੇ ਪਲੈਂਕ ਨੂੰ ਅਪਣੇ ਹਵਾਲਿਆਂ ਵਿੱਚ ਸ਼ਾਮਿਲ ਕਰਦੀ ਹੈ।[28] ਪਾਠਕ ਇੱਥੇ ਉੱਪਰ ਲਿਖੀਆਂ ਦੋ ਸਟੇਟਮੈਂਟਾਂ ਦੀ ਤੁਲਨਾ ਕਰ ਸਕਦੇ ਹਨ। ਪਲੈਂਕ ਦਾ ਬਿਆਨਪਲੈਂਕ ਨੇ ਦੂਜੇ ਨਿਯਮ ਨੂੰ ਇਸਤਰਾਂ ਬਿਆਨ ਕੀਤਾ ਹੈ। ਸਗੋਂ ਪਲੈਂਕ ਦੀ ਸਟੇਟਮੈਂਟ ਵਰਗੀ ਉਹਲਨਬੈਕ ਦੀ ਵੀ ਸਟੇਟਮੈਂਟ ਹੈ ਅਤੇ ਨਾ-ਪਲਟਾਓਣਯੋਗ ਵਰਤਾਰਿਆਂ ਵਾਸਤੇ ਫੋਰਡ ਦੀ ਵੀ ।
ਕੈਰਾਥੀਓਡੋਰੀ ਦਾ ਸਿਧਾਂਤ
ਕੰਸਟੈਂਟਿਨ ਕੈਰਾਥਿਓਡੋਰੀ ਨੇ ਇੱਕ ਸ਼ੁੱਧ ਗਣਿਤਿਕ ਸਵੈ-ਸਿੱਧਾਂਤਿਕ ਬੁਨਿਆਦਾ ਉੱਤੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਕੀਤੀ । ਦੂਜੇ ਨਿਤਮ ਬਾਬਤ ਉਸਦੀ ਸਟੇਟਮੈਂਟ ਨੂੰ ਕੈਰਾਥਿਓਡੋਰੀ ਦੇ ਸਿਧਾਂਤ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਜੋ ਇਸਤਰਾਂ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ:[33]
ਇਸ ਜਾਣਕਾਰੀ ਨਾਲ, ਉਸਨੇ ਏਡੀਆਬੈਟਿਕ ਪਹੁੰਚਯੋਗਤਾ ਦੇ ਸੰਕਲਪ (ਧਾਰਨਾ) ਨੂੰ ਪਹਿਲੀ ਵਾਰ ਦਰਸਾਇਆ ਅਤੇ ਰੇਖਾਗਣਿਤਿਕ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਕਹੇ ਜਾਂਦੇ ਕਲਾਸੀਕਲ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਇੱਕ ਨਵੀਨ ਉੱਪ-ਖੇਤਰ ਵਾਸਤੇ ਬੁਨਿਆਦਾ ਮੁਹੱਈਆ ਕਰਵਾਈ । ਕੈਰਾਥੀਓਡੋਰੀ ਦੇ ਸਿਧਾਂਤ ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਐਨਰਜੀ ਦੀ ਮਾਤਰਾ ਦਾ ਕੁਆਸੀ-ਸਟੈਟਿਸਟੀਕਲ ਤੌਰ ਤੇ ਹੀਟ ਦੇ ਰੂਪ ਵਿੱਚ ਸੰਚਾਰਿਤ ਹੋਣਾ ਇੱਕ ਹੋਲੋਨੋਮਿਕ (ਸੰਪੂਰਣ) ਪ੍ਰੋਸੈੱਸ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ, ਦੂਜੇ ਸ਼ਬਦਾਂ ਵਿੱਚ, [35] [ਸਪਸ਼ਟੀਕਰਨ ਲੋੜੀਂਦਾ] ਬੇਸ਼ੱਕ ਟੈਕਸਟਬੁਕਾਂ ਅੰਦਰ ਇਹ ਕਹਿਣਾ ਲੱਗਪਗ ਰਿਵਾਜ਼ ਬਣ ਗਿਆ ਹੈ ਕਿ ਕੈਰਾਥਿਓਡੋਰੀ ਦਾ ਸਿਧਾਂਤ ਦੂਜੇ ਨਿਯਮ ਨੂੰ ਦਰਸਾਉਂਦਾ ਹੈ ਅਤੇ ਇਸਨੂੰ ਕਲਾਓਸੀਅਸ ਜਾਂ ਕੈਲਵਿਨ-ਪਲੈਂਕ ਕਥਨਾਂ ਸਮਾਨ ਵਿਚਾਰਨਾ, ਵਾਸਤਵ ਵਿੱਚ ਇੰਝ ਨਹੀਂ ਹੈ। ਦੂਜੇ ਨਿਯਮ ਦੀ ਸਾਰੀ ਸਮੱਗਰੀ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ, ਕੈਰਾਥਿਓਡੋਰੀ ਦੇ ਸਿਧਾਂਤ ਨੂੰ ਪਲੈਂਕ ਦੇ ਸਿਧਾਂਤ ਰਾਹੀਂ ਪੂਰਾ ਕਰਨਾ ਪੈਂਦਾ ਹੈ, ਕਿ ਕਿਸੇ ਅਜਿਹੇ ਬੰਦ ਸਿਸਟਮ ਦੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਆਇਸੋਕੋਰਿਕ ਕੰਮ ਹਮੇਸ਼ਾਂ ਹੀ ਵਧਾ ਦਿੰਦਾ ਹੈ ਜੋ ਸ਼ੁਰੂਆਤ ਵਿੱਚ ਅਪਣੇ ਅੰਦਰੂਨੀ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।[8][36][37][38] [ਸਪਸ਼ਟੀਕਰਨ ਲੋੜੀਂਦਾ] ਪਲੈਂਕ ਦਾ ਸਿਧਾਂਤ1926 ਵਿੱਚ, ਮੈਕਸ ਪਲੈਂਕ ਨੇ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਅਧਾਰ ਤੇ ਇੱਕ ਮਹੱਤਵਪੂਰਨ ਪਰਚਾ ਲਿਖਿਆ ।[37][39] ਉਸਨੇ ਇਸ ਸਿਧਾਂਤ ਵੱਲ ਇਸ਼ਾਰਾ ਕੀਤਾ ਇਹ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਹੀਟ ਬਾਰੇ ਨਹੀਂ ਦੱਸਦੀ ਅਤੇ ਤਾਪਮਾਨ ਦਾ ਨਾਮ ਵੀ ਨਹੀਂ ਲੈਂਦੀ, ਨਾ ਹੀ ਐਨਟ੍ਰੌਪੀ ਦਾ ਹੀ ਜਿਕਰ ਕਰਦੀ ਹੈ, ਅਤੇ ਨਾ ਹੀ ਇਹ ਜਰੂਰੀ ਹੈ ਕਿ ਇਹ ਅੱਖਾ ਮਿਚ ਕੇ ਉਹਨਾਂ ਧਾਰਨਾਵਾਂ ਉੱਤੇ ਭਰੋਸਾ ਕਰਦੀ ਹੈ, ਪਰ ਇਹ ਦੂਜੇ ਨਿਯਮ ਦੀ ਸਮੱਗਰੀ ਤੋਂ ਭਾਵ ਰੱਖਦੀ ਹੈ। ਇੱਕ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਸਬੰਧਤ ਸਟੇਟਮੈਂਟ ਇਹ ਹੈ ਕਿ "ਰਗੜ ਬਲ ਪ੍ਰੈੱਸ਼ਰ ਕਦੇ ਵੀ ਪੌਜ਼ਟਿਵ ਕੰਮ ਨਹੀਂ ਕਰਦਾ।"[40] ਸ਼ਬਦਾ ਦਾ ਅਜਕੱਲ ਇੱਕ ਅਪ੍ਰਚਿੱਲਤ ਰੂਪ ਵਰਤਦੇ ਹੋਏ, ਪਲੈਂਕ ਨੇ ਖੁਦ ਲਿਖਿਆ ਕਿ: "ਰਗੜ ਬਲ ਦੁਆਰਾ ਗਰਮੀ ਦੀ ਪੈਦਾਇਸ਼ ਨਾ-ਪਲਟਾਓਣਯੋਗ ਹੈ।"[41][42] ਐਨਟ੍ਰੌਪੀ ਦਾ ਜਿਕਰ ਨਾ ਕਰਦੇ ਹੋਏ, ਪਲੈਂਕ ਦਾ ਇਹ ਸਿਧਾਂਤ ਭੌਤਿਕੀ ਨਿਯਮਾਂ ਅੰਦਰ ਬਿਆਨ ਕੀਤਾ ਜਾਂਦਾ ਹੈ। ਇਹ ਕੈਲਵਿਨ ਸਟੇਟਮੈਂਟ ਨਾਲ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਬਹੁਤ ਜਿਆਦਾ ਸਬੰਧ ਰੱਖਦਾ ਹੈ ਜੋ ਉੱਪਰ ਦਿੱਤੀ ਗਈ ਹੈ।[43] ਇਹ ਇਸਤਰਾਂ ਸਬੰਧਤ ਹੈ ਕਿ ਸਥਿਰ ਵੌਲੀਊਮ ਅਤੇ ਮੋਲ ਨੰਬਰਾਂ ਉੱਤੇ ਕਿਸੇ ਸਿਸਟਮ ਲਈ, ਐਨਟ੍ਰੌਪੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਦਾ ਇੱਕ ਮੋਨੋਟੋਨਿਕ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੈ। ਹੋਰ ਤਾਂ ਹੋਰ, ਪਲੈਂਕ ਦਾ ਇਹ ਸਿਧਾਂਤ ਦਰਅਸਲ ਪਲੈਂਕ ਦੀ ਦੂਜੇ ਨਿਯਮ ਬਾਬਤ ਤਰਜੀਹੀ ਸਟੇਟਮੈਂਟ ਨਹੀਂ ਹੈ, ਜੋ ਇਸ ਵਰਤਮਾਨ ਲੇਖ ਦੇ ਵਰਤਮਾਨ ਸੈਕਸ਼ਨ ਦੇ ਪਿਛਲੇ-ਉਪ-ਭਾਗ ਵਿੱਚ ਉੱਪਰ ਲਿਖਿਆ ਗਿਆ ਹੈ, ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਦੀ ਧਾਰਨਾ ਉੱਤੇ ਟਿਕਿਆ ਹੈ। ਇੱਕ ਬਿਆਨ ਜੋ ਕਿਸੇ ਸਮਝ ਅੰਦਰ ਪਲੈਂਕ ਦੇ ਸਿਧਾਂਤ ਪ੍ਰਤਿ ਪੂਰਕ (ਕੰਪਲੀਮੈਂਟਰੀ) ਹੈ ਬੋਰਗਨਾਕੇ ਅਤੇ ਸੋਨਟੈਗ ਦੁਆਰਾ ਬਣਾਇਆ ਗਿਆ ਹੈ। ਉਹ ਇਸਨੂੰ ਦੂਜੇ ਨਿਯਮ ਦੀ ਇੱਕ ਪੂਰੀ ਸਟੇਟਮੈਂਟ ਦੇ ਤੌਰ ਤੇ ਪੇਸ਼ ਨਹੀਂ ਕਰਦੇ:
ਪਲੈਂਕ ਤੋਂ ਸਿਰਫ ਪੂਰਵ ਸਿਧਾਂਤ ਹੋਣ ਦੇ ਫਰਕ ਕਾਰਨ, ਇਹ ਐਨਟ੍ਰੌਪੀ ਤਬਦੀਲੀ ਦੇ ਨਿਯਮਾਂ ਅੰਦਰ ਸਪੱਸ਼ਟ ਤੌਰ ਤੇ ਹੁੰਦਾ ਹੈ। ਬੇਸ਼ੱਕ, ਕਿਸੇ ਸਿਸਟਮ ਤੋਂ ਪਦਾਰਥ ਦਾ ਹਟਾ ਲੈਣਾ ਇਸਦੀ ਐਨਟੌਪੀ ਵੀ ਘਟਾ ਸਕਦਾ ਹੈ। ਕਿਸੇ ਅਜਿਹੇ ਸਿਸਟਮ ਵਾਸਤੇ ਕਥਨ ਜੋ ਅਪਣੀ ਅੰਦਰੂਨੀ ਊਰਜਾ ਦੀ ਇੱਕ ਗਿਆਤ ਸਮੀਕਰਨ ਅਪਣੇ ਵਿਆਪਕ ਅਵਸਥਾ ਅਸਥਿਰਾਂਕਾਂ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਰੱਖਦਾ ਹੋਵੇਦੂਜਾ ਨਿਯਮ ਇੱਕ ਕਮਜੋਰ ਕਨਵੈਕਸ ਫੰਕਸ਼ਨ ਹੁੰਦਾ ਹੋਇਆ ਅੰਦਰੂਨੀ ਊਰਜਾ U ਦੇ ਸਮਾਨ ਵੀ ਸਾਬਤ ਕੀਤਾ ਗਿਆ ਹੈ, ਜਦੋਂ ਵਿਆਪਕ ਵਿਸ਼ੇਸ਼ਤਾਵਾਂ (ਪੁੰਜ, ਵੌਲੀਊਮ, ਐਨਟ੍ਰੌਪੀ, ਆਦਿ) ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਲਿਖਿਆ ਜਾਂਦਾ ਹੈ।[45][46] [ਸਪਸ਼ਟੀਕਰਨ ਲੋੜੀਂਦਾ] ਸੁਭਾਵਿਕ ਨਤੀਜੇਦੂਜੀ ਕਿਸਮ ਦੀ ਨਿਰੰਤਰ ਗਤੀਦੂਜੇ ਨਿਯਮ ਦੀ ਸਥਾਪਨਾ ਤੋਂ ਪਹਿਲਾਂ, ਕਈ ਲੋਕ ਜੋ ਇੱਕ ਨਿਰੰਤਰ ਗਤੀ ਮਸ਼ੀਨ ਇਜਾਦ ਕਰਨ ਵਿੱਚ ਦਿਲਚਸਪੀ ਰੱਖਦੇ ਸਨ, ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਪਹਿਲੇ ਨਿਯਮ ਦੀਆਂ ਪਾਬੰਧੀਆਂ ਦਾ ਕੋਈ ਰਸਤਾ ਲੱਭਣ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰ ਚੁੱਕੇ ਸਨ, ਜਿਸ ਦੇ ਲਈ ਵਾਤਾਵਰਨ ਦੀ ਭਾਰੀ ਅੰਦਰੂਨੀ ਐਨਰਜੀ ਨੂੰ ਮਸ਼ੀਨ ਦੀ ਸ਼ਕਤੀ ਦੇ ਤੌਰ ਤੇ ਕੱਢਣਾ ਸੀ। ਅਜਿਹੀ ਕਿਸੇ ਮਸ਼ੀਨ ਨੂੰ ਇੱਕ "ਦੂਜੀ ਕਿਸਮ ਦੀ ਨਿਰੰਤਰ ਗਤੀ ਵਾਲੀ ਮਸ਼ੀਨ" ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਦੂਜੇ ਨਿਯਮ ਨੇ ਅਜਿਹੀਆਂ ਮਸ਼ੀਨਾਂ ਦੀ ਅਸੰਭਵਤਾ ਐਲਾਨੀ । ਕਾਰਨੌਟ ਥਿਊਰਮਕਾਰਨੌਟ ਦੀ ਥਿਊਰਮ (1824) ਕਿਸੇ ਸੰਭਵ ਇੰਜਣ ਲਈ ਉੱਚਤਮ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ (ਐਫੀਸ਼ੈਂਸੀ) ਦੀ ਸੀਮਾ ਤੈਅ ਕਰਨ ਵਾਲਾ ਸਿਧਾਂਤ ਹੈ। ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਸ਼ੁੱਧ ਤੌਰ ਤੇ ਗਰਮ ਅਤੇ ਠੰਢੇ ਥਰਮਲ ਸੁਰੱਖਿਅਕਾਂ ਦਰਮਿਆਨ ਤਾਪਮਾਨ ਅੰਤਰ ਉੱਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਕਾਰਨੌਟ ਥਿਊਰਮ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ:
ਅਪਣੇ ਆਦਰਸ਼ ਮਾਡਲ ਅੰਦਰ, ਕੰਮ ਵਿੱਚ ਬਦਲੀ ਕੈਲੌਰਿਕ ਹੀਟ ਓਸ ਚੱਕਰ ਦੀ ਗਤੀ ਉਲਟਾ ਕੇ ਪੁਨਰ-ਸਥਾਪਿਤ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਜਿਸ ਧਾਰਨਾ ਨੂੰ ਨਤੀਜੇ ਵਜੋਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਰਿਵਰਸੀਬਿਲਟੀ ਕਿਹਾ ਜਾਂਦਾ ਹੈ। ਕਾਰਨੌਟ ਨੇ ਫੇਰ ਵੀ, ਹੋਰ ਅੱਗੇ, ਸਵੈ-ਸਿੱਧ ਕੀਤਾ ਕਿ ਕੁੱਝ ਕੈਲੌਰਿਕ ਗੁਆ ਦਿੱਤੀ ਜਾਂਦੀ ਹੈ, ਜੋ ਮਕੈਨੀਕਲ ਕੰਮ ਵਿੱਚ ਤਬਦੀਲ ਨਹੀਂ ਹੁੰਦੀ । ਇਸ ਲਈ, ਕੋਈ ਵੀ ਵਾਸਤਵਿਕ ਹੀਟ ਇੰਜਣ ਕਾਰਨੌਟ ਚੱਕਰ ਦੀ ਪਲਟਣਯੋਗਤਾ ਨਹੀਂ ਮਹਿਸੂਸ ਕਰ ਸਕਦਾ ਅਤੇ ਘੱਟ ਕਾਰਜ-ਕੁਸ਼ਲ ਹੋਣਾ ਮੰਨਿਆ ਜਾਂਦਾ ਹੈ। ਭਾਵੇਂ ਐਨਟ੍ਰੌਪੀ ਦੀ ਜਗਹ ਕੈਲੌਰਿਕ (ਦੇਖੋ ਔਬਸੋਲੇਟ ਕੈਲੌਰਿਕ ਥਿਊਰੀ) ਦੇ ਨਿਯਮਾਂ ਵਿੱਚ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦ ਕੀਤੀ ਗਈ ਹੈ, ਫੇਰ ਵੀ ਇਹ ਦੂਜੇ ਨਿਯਮ ਵਿੱਚ ਇੱਕ ਸ਼ੂਰੂਆਤੀ ਸਮਝ ਸੀ। ਕਲਾਓਸੀਅਸ ਅਸਮਾਨਤਾਕਲਾਓਸੀਅਸ ਥਿਊਰਮ (1854) ਕਿਸੇ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆ ਅੰਦਰ ਬਿਆਨ ਕਰਦੀ ਹੈ ਕਿ ਇਹ ਸਮਾਨਤਾ (ਬਰਾਬਰਤਾ) ਉਲਟਣਯੋਗ ਮਾਮਲੇ ਅੰਦਰ ਵੀ ਲਾਗੂ ਹੁੰਦੀ ਹੈ [47] ਅਤੇ '<' ਗੈਰ-ਉਲਟਣਯੋਗ ਮਾਮਲਾ ਹੈ। ਉਲਟਣਯੋਗ ਮਾਮਲਾ ਅਵਸਥਾ ਫੰਕਸ਼ਨ ਐਨਟ੍ਰੌਪੀ ਪੇਸ਼ ਕਰਨ ਲਈ ਵਰਤਿਆ ਜਾਂਦਾ ਹੈ। ਅਜਿਹਾ ਇਸ ਲਈ ਹੈ ਕਿਉਂਕਿ ਕਿਸੇ ਅਵਸਥਾ ਫੰਕਸ਼ਨ ਦੀ ਵੇਰੀਏਸ਼ਨ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਅੰਦਰ ਅਵਸਥਾ ਫੰਕਸ਼ਨਲਟੀ ਤੋਂ 0 ਰਹਿੰਦੀਆਂ ਹਨ। ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਤਾਪਮਾਨਕਿਸੇ ਮਨਮਰਜੀ ਦੇ ਹੀਟ ਇੰਜਣ ਲਈ, ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਇਹ ਹੁੰਦੀ ਹੈ: ਜਿੱਥੇ Wn ਪ੍ਰਤਿ ਚੱਕਰ ਕੀਤਾ ਗਿਆ ਸ਼ੁੱਧ ਕੰਮ ਦਰਸਾਉਂਦਾ ਹੈ। ਇਸਤਰਾਂ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਸਿਰਫ qC/qH ਉੱਤੇ ਹੀ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਇਸਤਰਾਂ, ਤਾਪਮਾਨਾਂ T1 ਅਤੇ T2 ਦਰਮਿਆਨ ਕ੍ਰਿਆਸ਼ੀਲ ਕੋਈ ਵੀ ਪਲਟਣਯੋਗ ਹੀਟ ਇੰਜਣ ਜਰੂਰ ਹੀ ਇੱਕੋ ਜਿਹੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਵਾਲਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਯਾਨਿ ਕਿ, ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਸਿਰਫ ਤਾਪਮਾਨਾਂ ਦਾ ਫੰਕਸ਼ਨ ਹੁੰਦੀ ਹੈ: ਇਸਦੇ ਨਾਲ ਹੀ, T1 ਅਤੇ T2 ਤਾਪਮਾਨਾਂ ਦਰਮਿਆਨ ਕ੍ਰਿਆਸ਼ੀਲ ਕੋਈ ਪਲਟਣਯੋਗ ਹੀਟ ਇੰਜਣ ਜਰੂਰ ਹੀ ਦੋ ਚੱਕਰਾਂ ਦੇ ਬਣੇ ਇੱਕ ਚੱਕਰ ਵਾਸਤੇ ਇੱਕੋ ਜੀੰਨੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਰੱਖਦਾ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਜਿਹਨਾਂ ਵਿੱਚੋਂ ਇੱਕ T1 ਅਤੇ ਇੱਕ ਹੋਰ (ਮੱਧ ਵਿਚਕਾਰਲਾ) ਤਾਪਮਾਨ T2 ਦਰਮਿਆਨ, ਅਤੇ ਦੂਜਾ T2 ਅਤੇ T3 ਦਰਮਿਆਨ ਹੁੰਦਾ ਹੈ। ਅਜਿਹਾ ਮਾਮਲਾ ਸਿਰਫ ਤਾਂ ਹੀ ਹੋ ਸਕਦਾ ਹੈ ਜੇਕਰ ਹੁਣ ਓਹ ਮਾਮਲਾ ਵਿਚਾਰੋ ਜਿੱਥੇ ਇੱਕ ਫਿਕਸ ਇਸ਼ਾਰੀਆ ਤਾਪਮਾਨ ਹੋਵੇ: ਜੋ ਪਾਣੀ ਦੇ ਟ੍ਰਿਪਲ ਪੋਆਇੰਟ ਦਾ ਤਾਪਮਾਨ ਹੁੰਦਾ ਹੈ। ਫੇਰ ਕਿਸੇ ਵੀ T2 ਅਤੇ T3 ਲਈ, ਇਸਲਈ, ਜੇਕਰ ਥਰਮੋਡਾਇਨਾਮਿਕ ਤਾਪਮਾਨ ਇਸ ਦੁਆਰਾ ਪਰਿਭਾਸ਼ਿਤ ਹੋਵੇ ਤਾਂ ਫੰਕਸ਼ਨ f, ਜੋ ਥਰਮੋਡਾਇਨਾਮਿਕ ਤਾਪਮਾਨ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਤੌਰ ਤੇ ਦੇਖਿਆ ਜਾਂਦਾ ਹੈ, ਸਰਲ ਤੌਰ ਤੇ ਹੁੰਦਾ ਹੈ ਅਤੇ ਰੈਫ੍ਰੈਂਸ ਤਾਪਮਾਨ T1 ਦਾ ਮੁੱਲ 273.16 ਹੋਵੇਗਾ । (ਬੇਸ਼ੱਕ ਕੋਈ ਵੀ ਰੈਫ੍ਰੈਂਸ ਤਾਪਮਾਨ ਅਤੇ ਕੋਈ ਕੋਈ ਵੀ ਪੌਜਟਿਵ ਸੰਖਿਅਕ ਮੁੱਲ ਵਰਤਿਆ ਜਾ ਸਕਦਾ ਸੀ।– ਚੋਣ ਇੱਥੇ ਕੈਲਵਿਨ ਪੈਮਾਨੇ ਨਾਲ ਸਬੰਧਤ ਹੈ।) ਐਨਟ੍ਰੌਪੀਕਲਾਓਸੀਅਸ ਸਮਾਨਤਾ ਮੁਤਾਬਿਕ, ਕਿਸੇ ਰਿਵ੍ਰਸੀਬਲ ਪ੍ਰੋਸੈੱਸ ਲਈ ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਲਾਈਨ ਇੰਟਗ੍ਰਲ ਰਸਤੇ ਤੋਂ ਸੁਤੰਤਰ ਹੁੰਦਾ ਹੈ। ਇਸਲਈ ਅਸੀਂ ਇੱਕ ਅਜਹੀ ਅਵਸਥਾ ਫੰਕਸ਼ਨ S ਕਹੀ ਜਾਣ ਵਾਲੀ ਐਨਟ੍ਰੌਪੀ ਪਰਿਭਾਸ਼ਿਤ ਕਰ ਸਕਦੇ ਹਾਂ, ਜੋ ਇਸ ਦੀ ਪਾਲਣਾ ਕਰਦੀ ਹੋਵੇ ਇਸਦੇ ਨਾਲ ਅਸੀਂ ਸਿਰਫ ਉੱਪਰਲੇ ਫਾਰਮੂਲੇ ਨੂੰ ਇੰਟੀਗ੍ਰੇਟ ਕਰਕੇ ਹੀ ਐਨਟ੍ਰੌਪੀ ਦਾ ਅੰਤਰ ਪ੍ਰਾਪਤ ਕਰ ਸਕਦੇ ਹਾਂ । ਸ਼ੁੱਧ ਮੁੱਲ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ, ਸਾਨੂੰ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਤੀਜੇ ਨਿਯਮ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ, ਜੋ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਪਰਫੈਕਟ ਕ੍ਰਿਸਟਲਾਂ ਲਈ ਐਬਸੋਲਿਊਟ ਜ਼ੀਰੋ ਉੱਤੇ S=0 ਹੁੰਦੀ ਹੈ। ਕਿਸੇ ਵੀ ਗੈਰ-ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਲਈ, ਕਿਉਂਕਿ ਐਨਟ੍ਰੌਪੀ ਇੱਕ ਅਵਸਥਾ ਫੰਕਸ਼ਨ ਹੀ ਹੁੰਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ਹਮੇਸ਼ਾਂ ਹੀ ਇੱਕ ਕਾਲਪਨਿਕ ਪਲਟਾਓਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਨਾਲ ਟਰਮੀਨਲ ਅਵਸਥਾਵਾਂ ਅਤੇ ਸ਼ੁਰੂਆਤੀ ਅਵਸਥਾਵਾਂ ਦਾ ਸੰਪਰਕ ਬਣਾ ਸਕਦੇ ਹਾਂ ਅਤੇ ਐਨਟ੍ਰੌਪੀ ਅੰਦਰ ਅੰਤਰ ਦਾ ਹਿਸਾਬ ਲਗਾਉਣ ਲਈ ਓਸ ਰਸਤੇ ਉੱਤੇ ਇੰਟੀਗ੍ਰੇਟ ਕਰ ਸਕਦੇ ਹਾਂ । ਹੁਣ ਉਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਨੂੰ ਉਲਟਾ ਕੇ ਕਹੀ ਗਈ ਨਾ-ਪਲਟਾਓਣਯੋਗ ਪ੍ਰਕਿਆ ਨਾਲ ਮੇਲ ਦਿਓ । ਇਸ ਲੂਪ ਉੱਤੇ ਕਲਾਓਸੀਅਸ ਅਸਮਾਨਤਾ ਲਾਗੂ ਕਰਦੇ ਹੋਏ, ਇਸਤਰਾਂ, ਜਿੱਥੇ ਪਲਟਣਯੋਗ ਟ੍ਰਾਂਸਫੌਰਮੇਸ਼ਨ ਹੋਣ ਤੇ ਸਮਾਨਤਾ ਲਾਗੂ ਹੁੰਦੀ ਹੈ। ਧਿਆਨ ਦੇਓ ਕਿ ਜੇਕਰ ਪ੍ਰਕ੍ਰਿਆ ਕੋਈ ਏਡੀਆਬੈਟਿਕ ਪ੍ਰਕ੍ਰਿਆ ਹੋਵੇ, ਤਾਂ ਹੁੰਦਾ ਹੈ, ਤਾਂ ਜੋ ਹੋਵੇ । ਐਨਰਜੀ, ਉਪਲਬਧ ਵਰਤੋਂਯੋਗ ਕੰਮ
ਇਤਿਹਾਸਕਲਾਓਸੀਅਸ ਦੁਆਰਾ ਦਿੱਤੇ ਗਏ ਕਾਰਣਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਇਹ ਸਵੈ-ਸਿੱਧ ਕਰਕੇ ਦੂਜੇ ਨਿਯਮ ਲਈ ਇੱਕ ਵਿਆਖਿਆ ਦਿੰਦਾ ਹੈ ਕਿ ਕੋਈ ਪਦਾਰਥ ਅਜਿਹੇ ਐਟਮਾਂ ਅਤੇ ਮੌਲੀਕਿਊਲਾਂ ਦਾ ਬਣਿਆ ਹੁੰਦਾ ਹੈ ਜੋ ਸਥਿਰ ਗਤੀ ਵਿੱਚ ਹੁੰਦੇ ਹਨ। ਸਿਸਟਮ ਅੰਦਰ ਹਰੇਕ ਕਣ ਵਾਸਤੇ ਪੁਜੀਸ਼ਨਾਂ ਅਤੇ ਵਿਲੌਸਟੀਆਂ ਦਾ ਇੱਕ ਵਿਸ਼ੇਸ਼ ਸਮੂਹ (ਸੈੱਟ) ਸਿਸਟਮ ਦੀ ਸੂਖਮ-ਅਵਸਥਾ ਕਿਹਾ ਜਾਂਦਾ ਹੈ ਅਤੇ ਸਥਿਰ ਗਤੀ ਕਾਰਨ, ਸਿਸਟਮ ਅਪਣੀ ਸੂਖਮ-ਅਵਸਥਾ ਨੂੰ ਸਥਿਰ ਤੌਰ ਤੇ ਤਬਦੀਲ ਕਰਦਾ ਰਹਿੰਦਾ ਹੈ। ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਸਵੈ-ਸਿੱਧ ਕਰਦਾ ਹੈ ਕਿ, ਸੰਤੁਲਨ ਵਿੱਚ, ਜਿਸ ਵਿੱਚ ਵੀ ਸਿਸਟਮ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਉਹ ਹਰੇਕ ਸੂਖਮ-ਅਵਸਥਾ ਸਮਾਨਤਾ ਦੇ ਨਾਲ ਹੀ ਹੋਂਦ ਰੱਖਦੀ ਹੋਣਾ ਸੰਭਵ ਹੁੰਦੀ ਹੈ, ਅਤੇ ਜਦੋਂ ਇਹ ਧਾਰਨਾ ਬਣਾ ਲਈ ਜਾਂਦੀ ਹੈ, ਤਾਂ ਇਹ ਸਿੱਧਾ ਹੀ ਇਸ ਨਤੀਜੇ ਵੱਲ ਪ੍ਰੇ੍ਰਿਤ ਕਰਦੀ ਹੈ ਕਿ ਦੂਜਾ ਨਿਯਮ ਜਰੂਰ ਹੀ (ਲਾਜ਼ਮੀ ਤੌਰ ਤੇ) ਕਿਸੇ ਸਟੈਟਿਸਟੀਕਲ (ਆਂਕੜਾਤਮਿਕ) ਸਮਝ ਵਿੱਚ ਲਾਗੂ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ। ਯਾਨਿ ਕਿ, ਦੂਜਾ ਨਿਯਮ ਔਸਤ ਉੱਤੇ ਲਾਗੂ ਹੋਵੇਗਾ, ਜੋ 1/√N ਦਰਜੇ ਦੀ ਇੱਕ ਸਟੈਟਿਸਟੀਕਲ ਵੇਰੀਏਸ਼ਨ ਸਮੇਤ ਹੁੰਦਾ ਹੈ ਜਿੱਥੇ N ਸਿਸਟਮ ਵਿਚਲੇ ਕਣਾਂ ਦੀ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ। ਰੋਜ਼ਾਨਾ (ਅਸਥੂਲਕ) ਪ੍ਰਸਥਿਤੀਆਂ ਵਾਸਤੇ, ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਕਿ ਦੂਜੇ ਨਿਯਮ ਦੀ ਉਲੰਘਣਾ ਹੋਵੇਗੀ ਵਿਵਹਾਰਿਕ ਤੌਰ ਤੇ ਸਿਫਰ ਹੁੰਦੀ ਹੈ। ਫੇਰ ਵੀ, ਥੋੜੇ ਕਣਾਂ ਵਾਲੇ ਸਿਸਟਮਾਂ ਵਾਸਤੇ, ਥਰਮੋਡਾਇਨਾਮਿਕ ਮਾਪਦੰਡ, ਜਿਹਨਾਂ ਵਿੱਚ ਐਨਟ੍ਰੌਪੀ ਵੀ ਸ਼ਾਮਿਲ ਹੈ, ਦੂਜੇ ਨਿਯਮ ਦੁਆਰਾ ਅਨੁਮਾਨਾਂ ਤੋਂ ਮਹੱਤਵਪੂਰਨ ਆਂਕੜਾਤਮਿਕ ਝੁਕਾਓ ਦਿਖਾ ਸਕਦੇ ਹਨ। ਕਲਾਸੀਕਲ ਥਰਮੋਡਾਇਨਾਮਿਕ ਥਿਊਰੀ ਇਹਨਾਂ ਸਟੈਟਿਸਟੀਕਲ ਵੇਰੀਏਸ਼ਨਾਂ ਨਾਲ ਨਹੀਂ ਵਰਤਦੀ । ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਤੋਂ ਡੈਰੀਵੇਸ਼ਨ (ਵਿਓਂਤਬੰਦੀ)ਲੋਸ਼ਮਿਡਟ ਦੀ ਪਹੇਲੀ ਕਾਰਣ, ਦੂਜੇ ਨਿਯਮ ਦੀ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਨੂੰ ਭੂਤਕਾਲ ਦੇ ਸਬੰਧ ਵਿੱਚ ਇੱਕ ਧਾਰਨਾ ਬਣਾਉਣੀ ਪੈਂਦੀ ਹੈ, ਕਿ ਭੂਤਕਾਲ ਵਿੱਚ ਕਿਸੇ ਵਕਤ ਸਿਸਟਮ ਗੈਰ-ਸਹਿ-ਸਬੰਧਤ ਹੁੰਦਾ ਹੈ; ਜੋ ਸਰਲ ਪ੍ਰੋਬੇਬਿਲਿਟਾਤਮਿਕ ਇਲਾਜ ਦੀ ਆਗਿਆ ਦਿੰਦਾ ਹੈ। ਇਹ ਧਾਰਨਾ ਆਮਤੌਰ ਤੇ ਇੱਕ ਹੱਦ ਸ਼ਰਤ ਦੇ ਤੌਰ ਤੇ ਸੋਚੀ ਜਾਂਦੀ ਹੈ, ਅਤੇ ਇਸਤਰਾਂ ਦੂਜਾ ਨਿਯਮ ਅੰਤ ਨੂੰ ਭੂਤਕਾਲ ਅੰਦਰ ਕਿਤੇ ਨਾ ਕਿਤੇ ਸ਼ੁਰੂਆਤੀ ਸ਼ਰਤਾਂ ਦਾ ਇੱਕ ਨਤੀਜਾ ਬਣ ਜਾਂਦਾ ਹੈ, ਸ਼ਾਇਦ ਬ੍ਰਹਿਮੰਡ (ਬਿੱਗ ਬੈਂਗ) ਦੀ ਸ਼ੁਰੂਆਤ ਵੇਲੇ, ਬੇਸ਼ੱਕ ਹੋਰ ਕਥਾਨਕ ਦ੍ਰਿਸ਼ ਵੀ ਸੁਝਾਏ ਗਏ ਹਨ।[48][49][50] ਇਹਨਾਂ ਧਾਰਨਾਵਾਂ ਦੇ ਦਿੱਤੇ ਹੋਣ ਤੇ, ਸਟੈਟਿਸਟੀਕਲ ਮਕੈਨਿਕਸ ਅੰਦਰ, ਦੂਜਾ ਨਿਯਮ ਇੱਕ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਨਹੀਂ ਰਹਿੰਦਾ, ਸਗੋਂ ਇਹ ਬੁਨਿਆਦੀ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਦਾ ਇੱਕ ਨਤੀਜਾ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਨੂੰ ਬਰਾਬਰ ਦਾ ਪੂਰਵ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਦੇ ਤੌਰ ਤੇ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ, ਜਿੱਥੋਂ ਤੱਕ ਇਹ ਸਪੱਸ਼ਟ ਰਹੇ ਕਿ ਸਰਲ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਤਰਕਾਂ ਸਿਰਫ ਭਵਿੱਖ ਤੇ ਹੀ ਲਾਗੂ ਕੀਤੀਆਂ ਜਾਂਦੀਆਂ ਹਨ, ਜਦੋਂਕਿ ਭੂਤਕਾਲ ਵਾਸਤੇ ਜਾਣਕਾਰੀ ਦੇ ਅਜਿਹੇ ਬਾਹਰੀ ਸੋਮੇ ਹੁੰਦੇ ਹਨ ਜੋ ਸਾਨੂੰ ਦੱਸਦੇ ਹਨ ਕਿ ਇਹ ਘੱਟ ਐਨਟ੍ਰੌਪੀ ਹੁੰਦੀ ਸੀ। [ਹਵਾਲਾ ਲੋੜੀਂਦਾ] ਦੂਜੇ ਨਿਯਮ ਦਾ ਪਹਿਲਾ ਹਿੱਸਾ, ਜੋ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕਿਸੇ ਥਰਮਲ ਤੌਰ ਤੇ ਆਇਸੋਲੇਟ ਕੀਤੇ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਸਿਰਫ ਵਧ ਸਕਦੀ ਹੈ, ਬਰਬਾਰ ਪੂਰਵ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਦਾ ਇੱਕ ਸੂਖਮ (ਮਮੂਲੀ) ਨਤੀਜਾ ਹੈ, ਜੇਕਰ ਅਸੀਂ ਥਰਮਲ ਸੰਤੁਲਨ ਅੰਦਰਲੇ ਸਿਸਟਮਾਂ ਤੱਕ ਐਨਟ੍ਰੌਪੀ ਦੀ ਧਾਰਨਾ ਨੂੰ ਸੀਮਤ ਕਰ ਦੇਈਏ । ਥਰਮਲ ਸੰਤੁਲਨ ਅੰਦਰਲੇ ਕਿਸੇ ਆਇਸੋਲੇਟ ਕੀਤੇ ਗਏ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਜੋ ਜਿੰਨੀ ਮਾਤਰਾ ਦੀ ਐਨਰਜੀ ਰੱਖਦੀ ਹੋਵੇ, ਇਹ ਹੁੰਦੀ ਹੈ: ਜਿੱਥੇ ਉਹਨਾਂ ਕੁਆਂਟਮ ਅਵਸਥਾਵਾਂ ਦੀ ਸੰਖਿਆ ਹੈ ਜੋ ਅਤੇ ਦਰਮਿਆਨ ਇੱਕ ਛੋਟੇ ਅੰਤਰਾਲ ਵਿੱਚ ਹੁੰਦੀਆੰ ਹਨ। ਇੱਥੇ ਇੱਕ ਫਿਕਸ ਕੀਤਾ ਹੋਇਆ ਅਸਥੂਲਕ ਤੌਰ ਤੇ ਛੋਟਾ ਐਨਰਜੀ ਅੰਤਰਾਲ ਹੁੰਦਾ ਹੈ। ਸਖਤੀ ਨਾਲ ਕਹੀਏ ਤਾਂ ਇਸਦਾ ਅਰਥ ਇਹ ਹੈ ਕਿ ਐਨਟ੍ਰੌਪੀ ਦੀ ਚੋਣ ਤੇ ਨਿਰਭਰ ਕਰਦੀ ਹੈ। ਫੇਰ ਵੀ, ਥਰਮੋਡਾਇਨਾਮਿਕ ਹੱਦ (ਯਾਨਿ ਕਿ, ਅੰਨਤ ਤੌਰ ਤੇ ਵਿਸ਼ਾਲ ਸਿਸਟਮ ਅਕਾਰ ਦੀ ਹੱਦ ਵਿੱਚ) ਅੰਦਰ, ਸਪੈਸਫਿਕ ਐਨਟ੍ਰੌਪੀ (ਪ੍ਰਤਿ ਯੂਨਿਟ ਵੌਲੀਊਮ ਜਾਂ ਪ੍ਰਤਿ ਯੂਨਿਟ ਪੁੰਜ ਐਨਟ੍ਰੌਪੀ) ਉੱਤੇ ਨਿਰਭਰ ਨਹੀਂ ਕਰਦੀ । ਮੰਨ ਲਓ ਸਾਡੇ ਕੋਲ ਇੱਕ ਅਜਿਹਾ ਆਇਸੋਲੇਟ ਕੀਤਾ ਗਿਆ ਸਿਸਟਮ ਹੈ ਜਿਸਦੀ ਅਸਥੂਲਕ ਅਵਸਥਾ ਨੂੰ ਕੁੱਝ ਅਸਥਿਰਾਂਕਾਂ ਦੁਆਰਾ ਦਰਸਾਇਆ ਜਾਂਦਾ ਹੋਵੇ । ਇਹ ਅਸਥੂਲਕ ਅਸਥਿਰਾਂਕ, ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਕੁੱਲ ਵੌਲੀਊਮ, ਸਿਸਟਮ ਅੰਦਰਲੇ ਪਿਸਟਨਾਂ ਦੀਆਂ ਪੁਜੀਸ਼ਨਾਂ ਆਦਿ ਵੱਲ ਇਸ਼ਾਰਾ ਕਰਦੇ ਹੋ ਸਕਦੇ ਹਨ। ਫੇਰ ਇਹਨਾਂ ਆਸਥਿਰਾਂਕਾਂ ਦੇ ਮੁੱਲਾਂ ਉੱਤੇ ਨਿਰਭਰ ਕਰੇਗਾ । ਜੇਕਰ ਕੋਈ ਅਸਥਿਰਾਂਕ ਫਿਕਸ ਨਹੀੰ ਕੀਤਾ ਗਿਆ ਹੁੱਦਾ, (ਯਾਨਿ ਕਿ, ਅਸੀਂ ਕਿਸੇ ਪਿਸਟਨ ਨੂੰ ਕਿਸੇ ਨਿਸ਼ਚਿਤ ਪੁਜੀਸ਼ਨ ਵਿੱਚ ਨਹੀਂ ਬੰਨਦੇ), ਤਾਂ ਕਿਉਂਕਿ ਸਾਰੀਆਂ ਸਕ੍ਰਿਆਯੋਗ ਅਵਸਥਾਵਾਂ ਇੱਕ ਸਮਾਨ ਹੀ ਸੰਤੁਲਨ ਵਿੱਚ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇਸਲਈ ਸੰਤੁਲਨ ਅੰਦਰਲਾ ਸੁਤੰਤਰ ਅਸਥਿਰਾਂਕ ਅਜਿਹਾ ਹੋਵੇਗਾ ਕਿ ਇਸਤਰਾਂ ਉੱਚਤਮ ਮੁੱਲ ਪ੍ਰਾਪਤ ਕਰ ਲਏਗਾ ਜਿਵੇਂ ਸੰਤੁਲਨ ਵਿੱਚ ਇਹ ਸਭ ਤੋਂ ਜਿਆਦਾ ਖੋਜੀ ਜਾ ਸਕਣ ਯੋਗ ਪ੍ਰਸਥਿਤੀ ਹੋਵੇ । ਜੇਕਰ ਅਸਥਿਰਾਂਕ ਨੂੰ ਸ਼ੁਰੂਆਤ ਵਿੱਚ ਕਿਸੇ ਮੁੱਲ ਉੱਤੇ ਫਿਕਸ ਕਰ ਦਿੱਤਾ ਜਾਵੇ ਤਾਂ ਸੁਤੰਤਰ ਕਰਨ ਤੇ ਅਤੇ ਉਦੋਂ ਜਦੋਂ ਨਵਾੰ ਸੰਤੁਲਨ ਅੱਪੜ ਜਾਂਦਾ ਹੈ, ਤੱਥ ਕਿ, ਅਸਥਿਰਾਂਕ ਅਪਣੇ ਆਪ ਨੂੰ ਇਸਤਰਾਂ ਅਡਜਸਟ ਕਰ ਲਏਗਾ ਕਿ ਉੱਚਤਮ ਰਹੇ, ਇਹ ਭਾਵ ਰੱਖਦਾ ਹੈ ਕਿ ਐਨਟ੍ਰੌਪੀ ਵਧ ਚੁੱਕੀ ਹੋਵੇਗੀ ਹੈ ਜਾਂ ਇਹ ਉਹੀ ਰਹੇਗੀ (ਜੇਕਰ ਉਹ ਮੁੱਲ ਜਿਸ ਉੱਤੇ ਅਸਥਿਰਾੰਕ ਫਿਕਸ ਕੀਤਾ ਗਿਆ ਸੀ।, ਸੰਤੁਲਨ ਮੁੱਲ ਹੀ ਹੋਵੇ) । ਕਲਪਨਾ ਕਰੋ ਕਿ ਅਸੀਂ ਕਿਸੇ ਸੰਤੁਲਨ ਪ੍ਰਸਥਿਤੀ ਤੋਂ ਸ਼ੁਰੂਆਤ ਕਰਦੇ ਹਾਂ ਅਤੇ ਅਸੀਂ ਕਿਸੇ ਅਸਥਰਿਾਂਕ ਤੋਂ ਇੱਕ ਪਾਬੰਧੀ ਹਟਾ ਦਿੰਦੇ ਹਾਂ । ਫੇਰ ਇਹ ਕੁੱਝ ਕਰ ਚੁੱਕਣ ਤੋਂ ਤੁਰੰਤ ਬਾਦ, ਸਕ੍ਰਿਅਯੋਗ ਸੂਖਮ-ਅਵਸਥਾਵਾਂ ਦੀ ਸੰਖਿਆ ਹੁੰਦੀ ਹੈ, ਪਰ ਅਜੇ ਵੀ ਸੰਤੁਲਨ ਨਹੀਂ ਅੱਪੜਿਆ ਹੁੰਦਾ, ਇਸਲਈ ਸਿਸਟਮ ਦੇ ਕਿਸੇ ਸਕ੍ਰਿਅਯੋਗ ਅਵਸਥਾ ਵਿੱਚ ਹੋਣ ਦੀਆਂ ਵਾਸਤਵਿਕ ਪ੍ਰੋਬੇਬਿਲਿਟੀਆਂ ਅਜੇ ਵੀ ਵਾਲੀ ਪੂਰਵ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋਈਆਂ ਹੁੰਦੀਆਂ । ਅਸੀੰ ਪਹਿਲਾਂ ਹੀ ਸਾਬਤ ਕਰ ਚੁੱਕੇ ਹਾਂ ਕਿ ਅੰਤਿਮ ਸੰਤੁਲਨ ਅਵਸਥਾ ਅੰਦਰ, ਐਨਟ੍ਰੌਪੀ ਵਧ ਚੁੱਕੀ ਹੋਵੇਗੀ ਜਾਂ ਪਿਛਲੀ ਸੰਤੁਲਨ ਅਵਸਥਾ ਦੇ ਸਾਪੇਖਿਕ ਓਸੇ ਮੁੱਲ ਤੇ ਕਾਇਮ ਰਹੇਗੀ । ਬੋਲਟਜ਼ਮਨ ਦੀ H-ਥਿਊਰਮ, ਫੇਰ ਵੀ, ਸਾਬਤ ਕਰਦੀ ਹੈ ਕਿ ਸੰਤੁਲਨ ਅਵਸਥਾ ਦੇ ਮੱਧ ਤੋਂ ਬਾਹਰ ਦੌਰਾਨ, ਮਾਤਰਾ H ਮੋਨੋਟੌਨੀਕਲ ਤੌਰ ਤੇ ਵਕਤ ਦੇ ਇੱਕ ਫੰਕਸ਼ਨ ਦੇ ਰੂਪ ਵਿੱਚ ਵਧਦੀ ਜਾਂਦੀ ਹੈ। ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਲਈ ਐਨਟ੍ਰੌਪੀ ਤਬਦੀਲੀ ਦੀ ਵਿਓਂਤਬੰਦੀਦੂਜੇ ਨਿਯਮ ਦਾ ਦੂਜਾ ਹਿੱਸਾ ਬਿਆਨ ਕਰਦਾ ਹੈ ਕਿ ਕੋਈ ਪਲਟਣਯੋਗ ਪ੍ਰਕ੍ਰਿਆ ਅਧੀਨ ਗੁਜ਼ਰ ਰਹੇ ਕਿਸੇ ਸਿਸਟਮ ਦੀ ਐਨਟ੍ਰੌਪੀ ਤਬਦੀਲੀ ਇਸਤਰਾਂ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ: ਜਿੱਥੇ ਤਾਪਮਾਨ ਨੂੰ ਇਸਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ: ਇਸ ਪਰਿਭਾਸ਼ਾ ਲਈ ਸਪੱਸ਼ਟੀਕਰਨ ਵਾਸਤੇ ਇੱਥੇ ਦੇਖੋ । ਕਲਪਨਾ ਕਰੋ ਕਿ ਕੋਈ ਸਿਸਟਮ ਕੁੱਝ ਬਾਹਰੀ ਪੈਰਾਮੀਟਰ, x ਰੱਖਦਾ ਹੋਵੇ, ਜੋ ਬਦਲੇ ਜਾ ਸਕਦੇ ਹੋਣ । ਆਮਤੌਰ ਤੇ, ਸਿਸਟਮ ਦੀਆਂ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ x ਉੱਤੇ ਨਿਰਭਰ ਕਰਨਗੀਆਂ । ਕੁਆਂਟਮ ਮਕੈਨਿਕਸ ਦੀ ਐਡੀਆਬੈਟਿਕ ਥਿਊਰਮ ਅਨੁਸਾਰ, ਸਿਸਟਮ ਦੇ ਹੈਮਿਲਟੋਨੀਅਨ ਦੀ ਇੱਕ ਅਨੰਤ ਤੌਰ ਤੇ ਧੀਮੀ ਤਬਦੀਲੀ ਦੀ ਹੱਦ ਅੰਦਰ, ਸਿਸਟਮ ਉਸੇ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾ ਵਿੱਚ ਕਾਇਮ ਰਹੇਗਾ ਅਤੇ ਇਸ ਕਾਰਨ ਜਿਸ ਵਿੱਚ ਇਹ ਹੁੱਦੀ ਹੈ ਓਸ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾ ਦੀ ਐਨਰਜੀ ਵਿੱਚ ਤਬਦੀਲੀ ਅਨੁਸਾਰ ਇਸਦੀ ਐਨਰਜੀ ਤਬਦੀਲ ਹੁੰਦੀ ਹੈ। ਸਰਵਾਸਧਾਰਨ ਕੀਤਾ ਗਿਆ ਫੋਰਸ, X, ਜੋ ਬਾਹਰੀ ਅਸਥਿਰਾਂਕ x ਨਾਲ ਸਬੰਧਤ ਹੁੰਦਾ ਹੈ ਇਸਤਰਾਂ ਪਰਿਭਾਸ਼ਿਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ ਕਿ ਸਿਸਟਮ ਦੁਆਰਾ ਕੀਤਾ ਗਿਆ ਕਾਰਜ ਹੋਵੇ ਜੇਕਰ x ਨੂੰ ਇੱਕ dx ਮਾਤਰਾ ਜਿੰਨਾ ਵਧਾ ਦਿੱਤਾ ਜਾਵੇ । ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਜੇਕਰ x ਵੌਲੀਊਮ ਹੋਵੇ, ਤਾਂ X ਪ੍ਰੈੱਸ਼ਰ ਹੋਵੇਗਾ । ਕਿਸੇ ਸਿਸਟਮ ਵਾਸਤੇ ਸਰਵ-ਸਧਾਰਨ ਕੀਤਾ ਗਿਆ ਫੋਰਸ (ਬਲ) ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾ ਵਿੱਚ ਹੁੰਦਾ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ ਜੋ ਇਸ ਸਮੀਕਰਨ ਰਾਹੀਂ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ: ਕਿਉਂਕਿ ਸਿਸਟਮ, ਦੇ ਇੱਕ ਅੰਤਰਾਲ ਅੰਦਰ ਕਿਸੇ ਵੀ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾ ਅੰਦਰ ਹੋ ਸਕਦਾ ਹੈ, ਇਸਲਈ ਅਸੀਂ ਸਿਸਟਮ ਵਾਸਤੇ ਸਰਵ-ਸਧਾਰਨ ਕੀਤੇ ਗਏ ਫੋਰਸ ਨੂੰ ਉੱਪਰਲੀ ਸਮੀਕਰਨ ਦੇ ਉਮੀਦ ਮੁੱਲ (ਐਕਸਪੈਕਟੇਸ਼ਨ-ਵੈਲੀਊ) ਦੇ ਤੌਰ ਤੇ ਪਰਿਭਾਸ਼ਿਤ ਕਰਦੇ ਹਾਂ: ਔਸਤ ਕੱਢਣ ਲਈ, ਅਸੀਂ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਦੀਆਂ ਇਹ ਗਿਣਤੀ ਗਿਣ ਕੇ ਪਾਰਟੀਸ਼ਨਾਂ (ਹਿੱਸੇ) ਕਰ ਦਿੰਦੇ ਹਾਂ ਕਿ ਅਤੇ ਦਰਮਿਆਨ ਇੱਕ ਦਾਇਰੇ (ਰੇਂਜ) ਅੰਦਰ ਵਾਸਤੇ ਇਹਨਾਂ ਵਿੱਚੋਂ ਕਿੰਨੀਆਂ ਕੋਈ ਮੁੱਲ ਰੱਖਦੀਆਂ ਹਨ। ਇਸ ਨੰਬਰ ਨੂੰ ਪੁਕਾਰਦੇ ਹੋਏ, ਸਾਡੇ ਕੋਲ ਇਹ ਪ੍ਰਾਪਤ ਹੁੰਦਾ ਹੈ: ਸਰਵ-ਸਧਾਰਨ ਕੀਤੇ ਫੋਰਸ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਕਰਨ ਵਾਲੀ ਔਸਤ ਨੂੰ ਹੁਣ ਇਸਤਰਾਂ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ: ਅਸੀਂ ਇਸਨੂੰ ਇਸਤਰਾਂ ਅੱਗੇ ਲਿਖਣ ਮੁਤਾਬਕ, ਸਥਿਰ ਐਨਰਜੀ E ਉੱਤੇ x ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਐਨਟ੍ਰੌਪੀ ਦੇ ਡੈਰੀਵੇਸ਼ਨ (ਵਿਓਂਤਬੰਦੀ) ਨਾਲ ਸਬੰਧਤ ਕਰ ਸਕਦੇ ਹਾਂ; ਮੰਨ ਲਓ ਅਸੀਂ x ਨੂੰ x + dx ਤੱਕ ਤਬਦੀਲ ਕਰਦੇ ਹਾਂ । ਫੇਰ ਬਦਲ ਜਾਵੇਗਾ ਕਿਉਂਕਿ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ x ਉੱਤੇ ਨਿਰਭਰ ਹੁੰਦੀਆਂ ਹਨ, ਜੋ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਨੂੰ ਅਤੇ ਦਰਮਿਆਨ ਰੇਂਜ ਦੇ ਅੰਦਰ ਜਾੰ ਬਾਹਰ ਜਾਣ ਲਈ ਮਜਬੂਤ ਕਰ ਦਿੰਦਾ ਹੈ। ਆਓ ਅਸੀਂ ਉਹਨਾਂ ਆਇਗਨ-ਅਵਸਥਾਵਾਂ ਉੱਤੇ ਧਿਆਨ ਕੇੱਦ੍ਰਿਤ ਕਰੀਏ ਜਿਹਨਾਂ ਵਾਸਤੇ ਦਾ ਮੁੱਲ ਅਤੇ ਦਰਮਿਆਨ ਰੇਂਜ ਅੰਦਰ ਹੀ ਰਹਿੰਦਾ ਹੈ। ਕਿਉਂਕਿ ਇਹ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾਵਾਂ ਐਨਰਜੀ ਵਿੱਚ Y dx ਵਾਧਾ ਕਰ ਲੈਂਦੀਆਂ ਹਨ, ਇਸਲਈ ਅਜਿਹੀਆਂ ਸਾਰੀਆਂ ਐਨਰਜੀ ਆਇਗਨ-ਅਵਸਥਾਵਾਂ ਜੋ E – Y dx ਤੋਂ E ਤੱਕ ਰੇਂਜ ਅੰਤ੍ਰਾਲ ਵਿੱਚ ਹੁੰਦੀਆਂ ਹਨ, E ਦੇ ਥੱਲੇ ਤੋਂ E ਦੇ ਉੱਪਰ ਵੱਲ ਚਲੇ ਜਾਂਦੀਆਂ ਹਨ। ਇਹ ਇਹਨਾਂ ਵਰਗੀਆਂ ਐਨਰਗੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਹੁੰਦੀਆਂ ਹਨ; ਜੇਕਰ , ਇਹ ਸਾਰੀਆਂ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਅਤੇ ਦਰਮਿਆਨ ਰੇਂਜ ਵਿੱਚ ਚਲੀਆਂ ਜਾਣਗੀਆਂ ਅਤੇ ਵਿੱਚ ਇੱਕ ਵਾਧੇ ਵਿੱਚ ਯੋਗਦਾਨ ਪਾਉਣਗੀਆਂ । ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਦੀ ਸੰਖਿਆ ਜੋ ਤੋਂ ਥੱਲੇ ਤੋਂ ਤੋਂ ਉੱਪਰ ਚਲੇ ਜਾਂਦੀਆਂ ਹਨ, ਬੇਸ਼ੱਕ, ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀਆਂ ਹਨ। ਅੰਤਰ; ਇਸਤਰਾਂ ਵਿੱਚ ਵਾਧੇ ਪ੍ਰਤਿ ਸ਼ੁੱਧ ਯੋਗਦਾਨ ਹੁੰਦਾ ਹੈ। ਧਿਆਨ ਦੇਓ ਕਿ ਜੇਕਰ Y dx ਦਾ ਮੁੱਲ ਤੋਂ ਜਿਆਦਾ ਹੋਵੇ, ਤਾਂ ਅਜਿਹੀਆਂ ਐਨਰਜੀ ਆਈਗਨ-ਅਵਸਥਾਵਾਂ ਹੋਣਗੀਆਂ ਜੋ E ਤੋਂ ਦੇ ਉੱਪਰ ਤੱਕ ਚਲੇ ਜਾਣਗੀਆਂ । ਇਹਨਾਂ ਦੀ ਗਿਣਤੀ ਅਤੇ , ਦੋਹਾਂ ਵਿੱਚ ਹੀ ਕੀਤੀ ਜਾਂਦੀ ਹੈ, ਇਸਲਈ ਓਸ ਮਾਮਲੇ ਵਿੱਚ ਉੱਪ ਦੱਸੀ ਸਮੀਕਰਨ ਸਹੀ (ਲਾਗੂ) ਰਹਿੰਦੀ ਹੈ। ਉੱਪਰਲੀ ਸਮੀਕਰਨ ਨੂੰ E ਪ੍ਰਤਿ ਇੱਕ ਡੈਰੀਵੇਟਿਵ ਦੇ ਤੌਰ ਤੇ ਲਿਖਦੇ ਹੋਏ ਅਤੇ Y ਉੱਪਰ ਜੋੜਦੇ ਹੋਏ ਇਹ ਇਕੁਏਸ਼ਨ ਬਣਦੀ ਹੈ: x ਦੇ ਸੰਦ੍ਰਭ ਵਿੱਚ ਦਾ ਲੌਗਰਿਥਮਿਕ ਡੈਰੀਵੇਟਿਵ ਇਸਤਰਾਂ ਇੱਥੋਂ ਪ੍ਰਾਪਤ ਕੀਤਾ ਜਾਂਦਾ ਹੈ: ਪਹਿਲੀ ਰਕਮ ਤੀਬਰ ਹੈ, ਯਾਨਿ ਕਿ, ਇਹ ਸਿਸਟਮ ਦੇ ਅਕਾਰ ਦੇ ਪੈਮਾਨੇ ਦੀ ਨਹੀਂ ਹੈ। ਇਸਤੋਂ ਵਿਰੁੱਧ, ਆਖਰੀ ਰਕਮ ਦਾ ਪੈਮਾਨਾ ਇਵੇਂ ਹੈ ਜਿਵੇਂ ਉਲਟ ਸਿਸਟਮ ਅਕਾਰ ਹੋਵੇ ਅਤੇ ਇਹ ਇਸਤਰਾਂ ਥਰਮੋਡਾਇਨਾਮਿਕ ਹੱਦ ਅੰਦਰ ਮੁੱਕ ਜਾਵੇਗੀ । ਇਸਤਰਾਂ ਅਸੀਂ ਖੋਜਦੇ ਹਾਂ ਕਿ: ਇਸਨੂੱ ਨਾਲ ਮੇਲਦੇ ਹੋਏ ਇਹ ਮਿਲਦਾ ਹੈ: ਕਾਨੋਨੀਕਲ ਐਨਸੈਂਬਲ ਦੁਆਰਾ ਦਰਸਾਏ ਜਾਂਦੇ ਸਿਸਟਮਾਂ ਵਾਸਤੇ ਵਿਓਂਤਬੰਦੀਜੇਕਰ ਕੋਈ ਸਿਸਟਮ ਕਿਸੇ ਤਾਪਮਾਨ T ਉੱਤੇ ਹੀਟ ਬਾਥ ਨਾਲ ਥਰਮਲ-ਸੰਪ੍ਰਕ ਵਿੱਚ ਹੋਵੇ, ਤਾਂ, ਸੰਤੁਲਨ ਵਿੱਚ, ਐਨਰਜੀ ਆਈਗਨਮੁੱਲਾਂ ਉੱਤੇ ਪ੍ਰੋਬੇਬਿਲਿਟੀ ਵਿਸਥਾਰ-ਵੰਡ ਕਾਨੋਨੀਕਲ ਐਨਸੈਂਬਲ ਦੁਆਰਾ ਪ੍ਰਾਪਤ ਹੁੰਦੀ ਹੈ: ਇੱਥੇ Z ਇੱਕ ਫੈਕਟਰ (ਤੋੜ ਕੇ ਲਿਖਿਆ ਜਾ ਸਕਣ ਵਾਲ਼ਾ ਹਿੱਸਾ) ਹੈ ਜੋ ਸਾਰੀਆਂ ਪ੍ਰੋਬੇਬਿਲਿਟੀਆਂ ਦੇ ਜੋੜ ਨੂੰ 1 ਤੱਕ ਨੌਰਮਲਾਇਜ਼ (ਮਾਨਕੀਕ੍ਰਿਤ) ਕਰਦਾ ਹੈ, ਇਸ ਫੰਕਸ਼ਨ ਨੂੰ ਪਾਰਟੀਸ਼ਨ ਫੰਕਸ਼ਨ ਦੇ ਨਾਮ ਨਾਲ ਜਾਣਿਆ ਜਾਂਦਾ ਹੈ। ਹੁਣ ਅਸੀਂ ਤਾਪਮਾਨ ਵਿੱਚ ਅਤੇ ਉਹਨਾਂ ਬਾਹਰੀ ਪੈਰਾਮੀਟਰਾਂ (ਮਾਪਦੰਡਾਂ) ਵਿੱਚ ਇੱਕ ਅਤਿਸੂਖਮ ਪਲਟਣਯੋਗ ਤਬਦੀਲੀ ਉੱਤੇ ਵਿਚਾਰ ਕਰਾਂਗੇ ਜਿਹਨਾਂ ਉੱਤੇ ਊੇਰਜਾ ਲੈਵਲ ਨਿਰਭਰ ਕਰਦੇ ਹਨ। ਐਨਟ੍ਰੌਪੀ ਦੇ ਸਰਵ ਸਧਾਰਨ ਫਾਰਮੂਲੇ: ਤੋਂ ਇਹ ਪਤਾ ਚਲਦਾ ਹੈ ਕਿ ਕਾਨੋਨੀਕਲ ਐਨਸੈਂਬਲ ਵਾਸਤੇ ਲਈ ਫਾਰਮੂਲਾ ਭਰਦੇ ਹੋਏ ਇੱਥੇ ਇਹ ਮਿਲਦਾ ਹੈ: ਜੀਵਤ ਜੀਵਥਰਮੋਡਾਇਨਾਮਿਕਸ ਫਾਰਮੂਲਾ ਵਿਓਂਤਬੰਦੀ ਦੇ ਦੋ ਸਿਧਾਂਤਿਕ ਤਰੀਕੇ ਹਨ,
ਇਹ ਦੋ ਤਰੀਕੇ ਜਿੰਦਗੀ ਦੀਆਂ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਨੂੰ ਸਮਝਣ ਵਿੱਚ ਮੱਦਦ ਕਰਦੇ ਹਨ। ਇਹ ਪ੍ਰਸੰਗ ਜਿਆਦਾਤਰ ਇਸ ਵਰਤਮਾਨ ਲੇਖ ਦੇ ਸਕੋਪ ਤੋਂ ਪਰੇ ਦੀ ਗੱਲ ਹੈ, ਪਰ ਬਹੁਤ ਸਾਰੇ ਵਿਦਵਾਨਾਂ ਦੁਆਰਾ ਵਿਚਾਰਿਆ ਗਿਆ ਹੈ, ਜਿਵੇਂ ਉਦਾਹਰਨ ਦੇ ਤੌਰ ਤੇ, ਐਰਵਿਨ ਸ਼੍ਰੋਡਿੰਜਰ, ਲੀਓਨ ਬ੍ਰੀਲੋਇਨ[51] ਅਤੇ ਇਜ਼ਾਕ ਐਜ਼ੀਮੋਵ। ਇਹ ਤਾਜ਼ਾ ਰਿਸਰਚ ਦਾ ਪ੍ਰਸੰਗ (ਟੌਪਿਕ) ਵੀ ਹੈ। ਇੱਕ ਜਾਇਜ ਸੰਖੇਪਤਾ ਤੱਕ, ਜੀਵਤ ਜੀਵਾਂ ਨੂੰ ਦੂਜੇ ਤਰੀਕੇ ਦੀਆਂ ਉਦਾਹਰਨਾਂ ਦੇ ਤੌਰ ਤੇ ਮੰਨਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਲੱਗਪਗ ਤੌਰ ਤੇ, ਦਿਨ-ਬ-ਦਿਨ ਕਿਸੇ ਜਾਨਵਰ ਦੇ ਭੌਤਿਕੀ ਅਵਸਥਾ ਚੱਕਰ, ਜਾਨਵਰ ਨੂੰ ਨਜ਼ਦੀਕੀ ਤੌਰ ਤੇ ਤਬਦੀਲ ਕਰੇ ਬਗੈਰ ਛੱਡਦੇ ਜਾਂਦੇ ਹਨ। ਜਾਨਵਰ ਭੋਜਨ, ਪਾਣੀ, ਅਤੇ ਔਕਸੀਜਨ ਲੈਂਦੇ ਹਨ, ਅਤੇ, ਮੈਟਾਬੋਲਿਜ਼ਮ ਦੇ ਨਤੀਜੇ ਵਜੋਂ, ਟੁੱਟੇ ਉਤਪਾਦ ਅਤੇ ਤਾਪ ਬਾਹਰ ਕੱਢਦੇ ਹਨ। ਰੁੱਖ ਸੂਰਜਾ ਤੋਂ ਰੇਡੀਏਟਿਵ ਊਰਜਾ ਲੈਂਦੇ ਹਨ, ਜਿਸਨੂੰ ਤਾਪ, ਅਤੇ ਕਾਰਬਨ ਡਾਈਔਕਸਾਈਡ ਅਤੇ ਪਾਣੀ ਦੇ ਤੌਰ ਤੇ ਸਮਝਿਆ ਜਾ ਸਕਦਾ ਹੈ। ਉਹ ਔਕਸੀਜਨ ਬਾਹਰ ਕੱਢਦੇ ਹਨ। ਇਸਤਰਾਂ ਉਹ ਵਧਦੇ ਫੁੱਲਦੇ ਹਨ। ਅੰਤ ਨੂੰ ਉਹ ਮਰ ਜਾਂਦੇ ਹਨ, ਅਤੇ ਦੁਰਗੰਧ ਬਚ ਜਾਂਦੀ ਹੈ। ਇਸਨੂੰ ਇੱਕ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆ ਕਿਹਾ ਜਾ ਸਕਦਾ ਹੈ। ਕੁੱਲ ਮਿਲਾ ਕੇ, ਸੂਰਜੀ ਪ੍ਰਕਾਸ਼ ਕਿਸੇ ਉੱਚ ਤਾਪਮਾਨ ਸੋਮੇ ਤੋਂ ਹੁੰਦਾ ਹੈ, ਜੋ ਸੂਰਜ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਦੀ ਊਰਜਾ ਇੱਕ ਘੱਟ ਤਾਪਮਾਨ ਵਾਲੇ ਸਿੰਕ, ਮਿੱਟੀ ਵੱਲ ਗੁਜ਼ਰਦੀ ਹੈ। ਇਹ ਰੁੱਖਾਂ ਦੇ ਆਲੇ-ਦੁਆਲੇ ਦੀ ਐਨਟ੍ਰੌਪੀ ਵਿੱਚ ਇੱਕ ਵਾਧਾ ਹੈ। ਇਸਤਰਾਂ ਜਾਨਵਰ ਅਤੇ ਰੁੱਖ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਦੀ ਪਾਲਣਾ ਕਰਦੇ ਹਨ, ਜੋ ਚੱਕਰੀ ਪ੍ਰਕ੍ਰਿਆਵਾਂ ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਵਿਚਾਰੇ ਜਾਂਦੇ ਹਨ। ਹੀਟ ਇੰਜਣਾਂ ਦੀ ਕਾਰਜ-ਕੁਸ਼ਲਤਾ ਦੀਆਂ ਸਧਾਰਨ ਧਾਰਨਾਵਾਂ ਇਸ ਸਮੱਸਿਆ ਪ੍ਰਤਿ ਮੁਸ਼ਕਿਲ ਨਾਲ ਹੀ ਲਾਗੂ ਹੁੰਦੀਆਂ ਹਨ ਕਿਉਂਕਿ ਇਹ ਬੰਦ ਸਿਸਟਮ ਮੰਨਦੀਆਂ ਹਨ। ਥਰਮੋਡਾਇਨਾਮਿਕ ਦ੍ਰਿਸ਼ਟੀਕੋਣ, ਜੋ ਇੱਕ ਸੰਤੁਲਨ ਅਵਸਥਾ ਤੋਂ ਕਿਸੇ ਹੋਰ ਸੰਤੁਲਨ ਅਵਸਥਾ ਤੱਕ ਲਾਂਘੇ ਨੂੰ ਪਹਿਲੇ ਤਰੀਕੇ ਵਿੱਚ ਵਿਚਾਰਦਾ ਹੈ, ਅਨੁਸਾਰ ਸਿਰਫ ਇੱਕ ਸੰਖੇਪ ਤਸਵੀਰ ਹੀ ਦਿਸਦੀ ਹੈ, ਕਿਉਂਕਿ ਜੀਵਤ ਜੀਵ ਕਦੇ ਕਦੇ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀਆਂ ਅਵਸਥਾਵਾਂ ਵਿੱਚ ਨਹੀਂ ਹੁੰਦੇ । ਜੀਵਤ ਜੀਵ ਜਰੂਰ ਹੀ ਖੁੱਲੇ ਸਿਸਟਮਾਂ ਦੇ ਤੌਰ ਤੇ ਵਿਚਾਰੇ ਜਾਣੇ ਚਾਹੀਦੇ ਹਨ, ਕਿਉਂਕਿ ਉਹ ਭੋਜਨ ਲੈਂਦੇ ਹਨ ਅਤੇ ਵੇਸਟ ਉਤਪਾਦ ਬਾਹਰ ਕੱਢ ਦਿੰਦੇ ਹਨ। ਖੁੱਲੇ ਸਿਸਟਮਾਂ ਦਾ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਵਰਤਮਾਨ ਤੌਰ ਤੇ ਅਕਸਰ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਇੱਕ ਅਵਸਥਾ ਤੋਂ ਕਿਸੇ ਹੋਰ ਅਵਸਥਾ ਤੱਕ ਲਾਂਘੇ ਦੇ ਸ਼ਬਦਾਂ ਵਿੱਚ ਵਿਚਾਰਿਆ ਜਾਂਦਾ ਹੈ, ਜਾਂ ਸਥਾਨਿਕ ਥਰਮੋਡਾਇਨਾਮਿਕ ਸੰਤੁਲਨ ਦੀ ਸੰਖੇਪਤਾ ਅੰਦਰ ਪ੍ਰਵਾਹ ਦੀ ਭਾਸ਼ਾ ਵਿੱਚ ਵਿਚਾਰਿਆ ਜਾਂਦਾ ਹੈ। ਜੀਵਤ ਜੀਵਾਂ ਵਾਲੀ ਸਮੱਸਿਆ ਨੂੰ ਗੈਰ-ਤਬਦੀਲ ਹੁੰਦੇ ਪ੍ਰਵਾਹਾਂ ਵਾਲੀ ਇੱਕ ਸਥਿਰ ਅਵਸਥਾ ਸਦੀ ਸੰਖੇਪਤਾ ਨੂੰ ਮੰਨ ਕੇ ਹੋਰ ਅੱਗੇ ਸਰਲ ਕੀਤੀ ਜਾ ਸਕਦੀ ਹੈ। ਅਜਿਹੀਆਂ ਸੰਖੇਪਤਾਵਾਂ ਵਾਸਤੇ ਐਨਟ੍ਰੌਪੀ ਪੈਦਾਵਰ ਦੇ ਸਰਵ ਸਧਾਰਨ ਸਿਧਾਂਤ ਰਿਸਰਚ ਜਾਂ ਅਣਸੁਲਝੀ ਵਰਤਮਾਨ ਚਰਚਾ ਪ੍ਰਤਿ ਹੁੰਦੇ ਹਨ। ਹੋਰ ਤਾਂ ਹੋਰ, ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੇ ਦੂਜੇ ਨਿਯਮ ਉੱਤੇ ਇਸ ਦ੍ਰਿਸ਼ਟੀਕੋਣ ਤੋਂ ਲਏ ਗਏ ਆਈਡੀਏ (ਵਿਚਾਰ) ਜੀਵਤ ਜੀਵਾਂ ਬਾਬਤ ਗਿਆਨ-ਭਰਪੂਰ ਹਨ। ਗਰੈਵੀਟੇਸ਼ਨਲ ਸਿਸਟਮਅਜਿਹੇ ਸਿਸਟਮਾਂ ਅੰਦਰ, ਜੋ ਅਪਣੇ ਵੇਰਵੇ ਵਾਸਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਦੀ ਮੰਗ ਨਹੀਂ ਕਰਦੇ, ਵਸਤੂਆਂ ਹਮੇਸ਼ਾਂ ਹੀ ਪੌਜ਼ਟਿਵ ਹੀਟ ਸਮਰਥਾ ਰੱਖਦੀਆਂ ਹਨ, ਜਿਸਦਾ ਅਰਥ ਹੈ ਕਿ ਐਨਰਜੀ ਵਧਣ ਨਾਲ ਤਾਪਮਾਨ ਵੀ ਵਧ ਜਾਂਦਾ ਹੈ। ਇਸਲਈ, ਜਦੋਂ ਊਰਜਾ ਕਿਸੇ ਉੱਚ-ਤਾਪਮਾਨ ਵਾਲੀ ਵਸਤੂ ਤੋਂ ਕਿਸੇ ਘੱਟ-ਤਾਪਮਾਨ ਵਾਲ਼ੀ ਵਸਤੂ ਵੱਲ ਵਹਿੰਦੀ ਹੈ, ਤਾਂ ਸੋਮੇ ਦਾ ਤਾਪਮਾਨ ਘਟ ਜਾਂਦਾ ਹੈ ਜਦੋਂਕਿ ਸਿੰਕ ਤਾਪਮਾਨ ਵਧ ਜਾਂਦਾ ਹੈ; ਜਿਸ ਕਾਰਨ ਤਾਪਮਾਨ-ਅੰਤਰ ਵਕਤ ਪਾ ਕੇ ਮੁੱਕਣ ਵੱਲ ਜਾਂਦਾ ਹੈ। ਇਹ ਮਾਮਲਾ ਅਜਿਹੇ ਸਿਸਟਮਾਂ ਦੇ ਮਾਮਲੇ ਵਿੱਚ ਹਮੇਸ਼ਾਂ ਨਹੀਂ ਹੁੰਦਾ ਜਿਹਨਾਂ ਵਿੱਚ ਗਰੈਵੀਟੇਸ਼ਨਲ ਬਲ ਮਹੱਤਵਪੂਰਨ ਹੁੰਦਾ ਹੈ ਅਤੇ ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਦੀ ਜਰੂਰਤ ਪੈਂਦੀ ਹੈ। ਅਜਿਹੇ ਸਿਸਟਮ ਪੁੰਜ ਅਤੇ ਊਰਜਾ ਦੇ ਅਸਮਾਨ ਖਿੰਡਾਓ ਵੱਲ ਤਤਕਾਲ ਬਦਲ ਸਕਦੇ ਹਨ। ਇਹ ਬ੍ਰਹਿਮੰਡ ਉੱਤੇ ਵਿਸ਼ਾਲ ਪੈਮਾਨੇ ਉੱਤੇ ਲਾਗੂ ਹੁੰਦਾ ਹੈ, ਅਤੇ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਇਸ ਉੱਤੇ ਦੂਜਾ ਨਿਯਮ ਲਾਗੂ ਕਰਨਾ ਕਠਿਨ ਜਾਂ ਅਸੰਭਵ ਹੀ ਹੋ ਸਕਦਾ ਹੈ। [52] ਇਸਤੋਂ ਪਰੇ, ਜਨਰਲ ਰਿਲੇਟੀਵਿਟੀ ਦੀ ਥਿਊਰੀ ਨਾਲ ਦਰਸਾਏ ਜਾਂਦੇ ਸਿਸਟਮਾਂ ਦਾ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਵਰਤਮਾਨ ਲੇਖ ਦੇ ਸਕੋਪ ਤੋਂ ਪਰੇ ਦੀ ਗੱਲ ਹੈ। ਗੈਰ-ਸੰਤੁਲਿਤ ਅਵਸਥਾਵਾਂਕਲਾਸੀਕਲ ਜਾਂ ਸੰਤੁਲਨ ਥਰਮੋਡਾਇਨਾਮਿਕਸ ਦੀ ਥਿਊਰੀ ਆਦਰਸ਼ਬੱਧ ਕੀਤੀ ਜਾਂਦੀ ਹੈ। ਇੱਕ ਪ੍ਰਮੁੱਖ ਸਵੈ-ਸਿੱਧ ਸਿਧਾਂਤ ਜਾਂ ਧਾਰਨਾ, ਅਕਸਰ ਜਿਸ� |