അക്കൊമഡേഷൻ എന്ന വാക്കാൽ വിവക്ഷിക്കുന്ന മറ്റ് കാര്യങ്ങളെക്കുറിച്ച് അറിയാൻ, ദയവായി അക്കൊമഡേഷൻ കാണുക.
അക്കൊമഡേഷൻ കുറഞ്ഞത് (മുകളിൽ) പരമാവധി അക്കൊമഡേഷൻ (ചുവടെ)
കശേരുകികളുടെകണ്ണിൽ എല്ലാ ദൂരത്തിലും വ്യക്തമായ കാഴ്ച നിലനിർത്താൻ ലെൻസിൻറെ ഫോക്കസ് ദൂരം വ്യത്യാസപ്പെടുന്ന പ്രക്രീയയാണ് അക്കൊമഡേഷൻ അഥവാ സമഞ്ജനക്ഷമത. ഇത് സാധാരണയായി ദൂരത്തിനനുസരിച്ച് ഒരു റിഫ്ലെക്സ് പോലെ പ്രവർത്തിക്കുന്നു, പക്ഷേ ഇത് ബോധപൂർവ്വം നിയന്ത്രിക്കാനും കഴിയും. സീലിയറി ബോഡി ഉപയോഗിച്ച് ഇലാസ്റ്റിക് ലെൻസിന്റെ രൂപം മാറ്റിക്കൊണ്ട് സസ്തനികളും പക്ഷികളും ഉരഗങ്ങളും കണ്ണിലെ ലെൻസിൻ്റെ ഒപ്റ്റിക്കൽ ശക്തി വ്യത്യാസപ്പെടുത്തുന്നു (മനുഷ്യരിൽ 15 ഡയോപ്റ്ററുകൾ വരെ). ലെൻസിന്റെ രൂപം മാറ്റുന്നതിന് പകരം, ലെൻസും റെറ്റിനയും തമ്മിലുള്ള ദൂരം പേശികളുപയോഗിച്ച് വ്യത്യാസപ്പെടുത്തുകയാണ് മത്സ്യവും ഉഭയജീവികളും ചെയ്യുന്നത്.[1]
പ്രായത്തിനനുസരിച്ച് അക്കൊമഡേഷനിലുണ്ടാവുന്ന മാറ്റം കാണിക്കുന്ന ഡുവാൻസ് ക്ലാസിക്കൽ കർവുകൾ. ശരാശരി (ബി), ഏകദേശ ലോവർ (എ), അപ്പർ (സി) സ്റ്റാൻഡേർഡ് ഡീവിയേഷനുകൾ കാണിച്ചിരിക്കുന്നു.[2]
മനുഷ്യന്റെ കണ്ണിന് ഫോക്കസ് ദൂരം അനന്തതയിൽ നിന്ന് 6.5 സെ.മീ വരെ മാറ്റാൻ കഴിയും.[3]സിലിയറി പേശി സങ്കോചം മൂലം സോണ്യൂളുകൾ അയയുകയും അനന്തരഫലമായി കണ്ണിന്റെ ഫോക്കൽ പവറിൽ മാറ്റം സംഭവിക്കുകയും ചെയ്യുന്നു (ഏകദേശം 15 ഡയോപ്റ്റർ വരെ). ഈ പ്രക്രിയ തെളിച്ചമുള്ള വെളിച്ചത്തിൽ 224 ± 30 മില്ലിസെക്കൻഡിൽ സംഭവിക്കാം.[4] വയസ്സ് കൂടുന്നതിനനുസരിച്ച് അക്കൊമഡേഷൻ കുറയുന്നു. നാൽപ്പത് വയസ്സിനോടടുക്കുമ്പോൾ സാധാരണക്കാരിൽ അക്കൊമേഷനിലെ ഈ കുറവ് മൂലം അടുത്ത് കാണുന്നതിൽ മങ്ങൽ ഉണ്ടാവുകയും വെള്ളെഴുത്ത് ഉണ്ടാവുകയും ചെയ്യുന്നു. പക്ഷെ, ഹ്രസ്വദൃഷ്ടി ഉള്ളവർക്ക് കണ്ണടകളില്ലാതെ തന്നെ തന്നെ സമീപത്ത് നന്നായി കാണാൻ കഴിയും; അതേസമയം ദീർഘദൃഷ്ടി ഉള്ളവർക്ക് ദൂര കാഴ്ചയ്ക്കും സമീപ കാഴ്ചയ്ക്കും കണ്ണട വേണ്ടിവരും. പ്രായത്തിനനുസരിച്ചുള്ള അക്കൊമഡേഷൻ മാറ്റം ഡുവാൻസ് ക്ലാസിക്കൽ കർവുകൾ ഗ്രാഫിക്കായി സംഗ്രഹിച്ചിരിക്കുന്നു.[2]
അക്കൊമഡേഷൻ സിദ്ധാന്തങ്ങൾ
ഹെൽംഹോൾട്സ് സിദ്ധാന്തം: 1855-ൽ ഹെർമൻ വോൺ ഹെൽംഹോൾട്സ് മുന്നോട്ടുവച്ചതാണ് ഏറ്റവും അംഗീകരിക്കപ്പെട്ട അക്കൊമഡേഷൻ സിദ്ധാന്തം. ഇത് പ്രകാരം, ദൂരെയുള്ള ഒരു വസ്തു കാണുമ്പോൾ, വൃത്താകൃതിയിൽ ക്രമീകരിച്ചിരിക്കുന്ന സിലിയറി പേശി വിശ്രമാവസ്ഥയിൽ ആവുകയും, ലെൻസ് സോണ്യൂളുകൾ ലെൻസിനെ വലിച്ച് അതിൻറെ മുൻ വക്രത കുറച്ച് പരന്നതാക്കുകയും ചെയ്യുന്നു. അതേസമയം, അടുത്തുള്ള ഒരു വസ്തു കാണുമ്പോൾ, സിലിയറി പേശികൾ ചുരുങ്ങി ലെൻസ് സോണ്യൂളുകൾ അയയുകയും ലെൻസിനെ കട്ടിയുള്ളതും കൂടുതൽ വക്രതയുള്ളതുമായ രൂപത്തിലേക്ക് തിരിച്ചുവരാൻ അനുവദിക്കുകയും ചെയ്യുന്നു.[5]
ഷാച്ചർ സിദ്ധാന്തം: റൊണാൾഡ് എ. ഷാച്ചർ 1992 ൽ നിർദ്ദേശിച്ച ഈ സിദ്ധാന്തം "തികച്ചും വിചിത്രമായ ജ്യാമിതീയ സിദ്ധാന്തം (rather bizarre geometric theory)"[6] എന്ന് വിളിക്കപ്പെടുന്നു. ഇത് ലെൻസിന്റെ ഫോക്കസ്, മധ്യരേഖാ മേഖലകളിലൂടെ ലെൻസിലെ വർദ്ധിച്ച ടെൻഷനുമായി ബന്ധപ്പെട്ടിരിക്കുന്നുവെന്ന് അവകാശപ്പെടുന്നു; സിലിയറി പേശി ചുരുങ്ങുമ്പോൾ, മധ്യരേഖാ സോണുലാർ ടെൻഷൻ വർദ്ധിക്കുകയും ലെൻസിന്റെ കേന്ദ്ര ഉപരിതലങ്ങളിലെ വക്രത കൂടുകയും ലെൻസിന്റെ കേന്ദ്ര കനം കൂടുകയും ചെയ്യുന്നു, അതേസമയം ലെൻസിന്റെ പെരിഫറൽ ഉപരിതലങ്ങൾ വക്രത കുറഞ്ഞ് പരന്നുവരും. അക്കൊമഡേഷനിൽ മധ്യരേഖാ മേഖലകളിലെ ടെൻഷൻ വർദ്ധിക്കുമ്പോൾ, മുൻവശം, പിൻവശം എന്നിവ ഒരേസമയം വിശ്രമിക്കുന്നു. വർദ്ധിച്ച മധ്യരേഖാ സോണുലാർ ടെൻഷൻ ലെൻസിനെ സ്ഥിരമായി നിലനിർത്തുകയും അക്കൊമഡേഷൻ സമയത്ത് പെരിഫറൽ ലെൻസ് ഉപരിതലത്തെ പരത്തുകയും ചെയ്യുന്നു. ഈ സിദ്ധാന്തത്തിന് പക്ഷെ സ്വതന്ത്രമായ പിന്തുണ ഇതുവരെയും ലഭിച്ചിട്ടില്ല.[7][8]
കാറ്റനറി സിദ്ധാന്തം: 1970-ൽ കോൾമാൻ കാറ്റനറി സിദ്ധാന്തം മുന്നോട്ടുവച്ചു, ലെൻസ്, സോണ്യൂളുകൾ, ആന്റീരിയർ വിട്രിയസ് എന്നിവ കണ്ണിന്റെ മുൻഭാഗത്തും വിട്രിയസ് അറകൾക്കിടയിലും ഒരു ഹമ്മോക്ക് പോലുള്ള ഡയഫ്രം ഉൾക്കൊള്ളുന്നു. സിലിയറി പേശി സങ്കോചം ആന്റീരിയർ ലെൻസിന്റെ ആകൃതിയെ പിന്തുണയ്ക്കുന്ന വിട്രിയസ്, അക്വസ് അറകൾക്കിടയിൽ ഒരു മർദ്ദം ചെലുത്തുന്നു. ഇത് യാന്ത്രികമായി പുനർനിർമ്മിക്കാൻ കഴിയുന്ന അവസ്ഥയിൽ ലെൻസിന്റെ പുറമേയുള്ള വക്രത ചെറുതായി കുറച്ച് മധ്യഭാഗത്തെ വക്രത കൂട്ടും. കോൾമാന്റെ 1970 ലെ പഠനം കാണിക്കുന്നത് സിലിയറി ബോഡിയുടെ സങ്കോചം വിട്രിയസ് മർദ്ദത്തിൽ വർദ്ധനവുണ്ടാക്കി, ലെൻസിൽ ഒരു ഹൈഡ്രോളിക് സ്വാധീനം ചെലുത്തി അതിൻറെ മുന്നോട്ടുള്ള സ്ഥാനചലനത്തിന് കാരണമാകും എന്നാണ്. ഇത് ജോൺസന്റെ കണ്ടെത്തലുകൾ സ്ഥിരീകരിക്കുന്നുണ്ട്. 1986-ൽ കോൾമാൻ വീണ്ടും ലെൻസിന്റെ മുന്നോട്ടുള്ള സ്ഥാനചലനം അക്കൊമഡേഷൻറെ ഒരു ഘടകമായി പരിശോധിച്ചു.[9][10][11]
പരാമർശങ്ങൾ
↑Augen (in German), archived from the original on 2017-12-07, retrieved 2009-05-02{{citation}}: CS1 maint: unrecognized language (link)
↑Chen, Ai Hong; O’Leary, Daniel J.; Howell, Edwin R. (2000). "Near visual function in young children". Ophthal. Physiol. Opt. 20 (3): 185–198. doi:10.1016/S0275-5408(99)00056-3, Fig. 5.{{cite journal}}: CS1 maint: postscript (link)