Share to: share facebook share twitter share wa share telegram print page

ទ្រឹស្តីបទកូស៊ីនុស

ទ្រឹស្តីបទកូស៊ីនុស (ឬច្បាប់កូស៊ីនុស ឬរូបមន្តកូស៊ីនុស, Law of cosines) គឺជាទ្រឹស្តីបទសិក្សាពីទំនាក់ទំនងរវាងជ្រុង និងកូស៊ីនុសមុំមួយនៃត្រីកោណ

ទំនាក់ទំនងរវាងជ្រុងនិងមុំក្នុងត្រីកោណ

ទ្រឹស្តីបទ

ចំពោះ ដែលមាន នោះគេបាន

សំរាយបញ្ជាក់

ដោយប្រើរូបមន្តចំងាយរវាងពីរចំនុច

យើងមានត្រីកោណ ABC មានរង្វាស់ជ្រុង a, b, c និង ជារង្វាស់មុំឈមនៃជ្រុងដែលមានរង្វាស់ c ។ យើងអាចដាក់ត្រីកោណក្នុងបប្រព័ន្ធកូអរដោនេ ដែល និង ។ តាមរូបមន្តចំងាយរវាងចំនុច A និង B យើងបាន

ដោយប្រើលក្ខណៈត្រីកោណមាត្រ

ត្រីកោណស្រួច(មុំទាំងបីជាមុំស្រួល)ជាមួយបន្ទាត់កែង

គូសបន្ទាត់មួយកែងនឹងជ្រុងដែលមានរង្វាស់ c ដូចបង្ហាញក្នុងរូបខាងស្តាំ យើងបាន

(ករណីនៅតែពិតដដែលទោះបីជា α ឬ β ជាមុំទាល (មុំដែលមានតំលែនៅចន្លោះ 90° និង ១៨០°) ដែលករណីនេះបន្ទាត់កែងស្ថិតនៅក្រៅត្រីកោណ។)

ដោយគុណអង្គសងខាងនៃសមីការនឹង c យើងបាន

ដូចគ្នាដោយសន្មតថាមានបន្ទាត់កែងគូសចេញពីកំពូលផ្សេងទៀត យើងបាន

បូកសមីការទាំងពីរចុងក្រោយខាងលើចូលគ្នា យើងបាន

ដោយជំនួសតំលៃនៃ ទៅក្នុងសមីការ ខាងលើ យើងបាន

ដោយប្រើទ្រឹស្តីបទពីតាករ

ត្រីកោណទាល(មានមុំ១ជាមុំទាល) មានកំពស់ BH

ករណីមុំទាលអឺគ្លីតបានបង្ហាញទ្រឹស្តីបទនេះដោយអនុវត្តទ្រឹស្តីបទពីតាករចំពោះត្រីកោណកែងទាំងពីរ (ត្រីកោណកែង AHB និងCHB ) ដូចបង្ហាញក្នុងរូបខាងស្តាំ។ តាង d ជាប្រវែងអង្កត់ CH និង h ជាកពស់ BH នៃត្រីកោណ AHB យើងបាន

និងចំពោះត្រីកោណ CHB យើងបាន

ដោយពន្លាតកន្សោមនៃសមីការទី១ខាងលើ យើងបាន

ដោយជំនួសទៅក្នុងសមីការទី២ខាងលើ យើងបាន

ដោយបំលែងទំរង់នេះទៅជាទំរងទំនើបនៃទ្រឹស្តីបទកូស៊ីនុស គេបានកំនត់សំគាល់

ជំនួសតំលៃ d ទៅក្នុងសមីការ យើងបានទ្រឹស្តីកូស៊ីនុស

សំរាយបញ្ជាក់ខ្លីដោយប្រើលក្ខណៈត្រីកោណមាត្រ ចំពោះករណីមុំទាល

ករណីមុំទាល៖ អឺគ្លីដបានអនុវត្តទ្រឹស្តីបទពីតាករចំពោះត្រីកោណកែងទាំងពីរដែលបង្កើត​ដោយគូសទំលាក់បន្ទាត់មកជ្រុងដែលមានរង្វាស់ b ជាប់មុំ γ និងបានប្រើប្រាស់ទ្រឹស្តីបទទ្វេធា ដើម្បីសំរាយអោយងាយ។

សំរាយបញ្ជាក់ម្យ៉ាងទៀតចំពោះករណីមុំទាល៖ ដោយអនុវត្តទ្រឹស្តីបទពីតាករចំពោះត្រីកោណកែងផ្នែកខាងធ្វេង ក្នុងរូបខាងស្តាំ យើងបាន

(ដែលតាមលក្ខណៈត្រីកោណមាត្រ )

ដោយប្រើផលគុណស្កាលែនៃវ៉ិចទ័រ

ដោយប្រើវិធីគណនារករង្វាស់វ៉ិចទ័រតាមរយៈផលគុណស្កាលែនៃវ៉ិចទ័រ យើងបានបំណកស្រាយទ្រឹស្តីកូស៊ីនុសបង្ហាញដូចខាងក្រោម

ទ្រឹស្តីបទកូស៊ីនុសចំពោះត្រីកោណសមបាទ

ពេល a = b មានន័យថាត្រីកោណ ABC ជាត្រីកោណសមបាត ដែលមានរង្វាស់ជ្រុងពីរមានប្រវែងស្មើគ្នា។ នោះ ។ គេបាន

អនុវត្ត

តាង a,b,c ជា​ប្រវែង​ជ្រុង និង A,B,C ជា​មុំ​នៃ​ត្រីកោណ​ ABC តាង S ជា​ក្រឡា​ផ្ទៃ​នៃ​ត្រីកោណ ABC។ ចូរ​ស្រាយ​បញ្ជាក់​ថា

ដំណោះស្រាយ

តាមទ្រឹស្តីបទស៊ីនុស ក្រលាផ្ទៃនៃត្រីកោណ ABC កំនត់ដោយ

ដោយអនុវត្តទ្រឹស្តីបទកូស៊ីនុស យើងបាន

ដូចគ្នាដែរ

ដូច្នេះយើងបាន

សូមមើលផងដែរ

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya