Sum-free set加法的組み合わせ論(additive combinatorics)や加法的数論(additive number theory)では、アーベル群 G の部分集合 A が、sum-free とは、sumset が A と互いに素であるときを言う。言い換えると、A が sum-free 集合とは、式 a + b = c が a, b, c ∈ A では解を持たない場合を言う。 例えば、奇数全体からなる集合は、整数全体からなる集合の sum-free(部分)集合であり、N が偶数のとき、集合 {N/ 2 + 1 , ..., N} は、集合 {1, ..., N} の大きな sum-free 部分集合となる。フェルマーの最終定理は、n > 2 のときに、0 を除く全ての整数の n 乗からなる集合は、整数の sum-free 部分集合であることと言うことと同じである。 sum-free(部分)集合についてのいくつかの基本的疑問は、下記のような疑問がある。
sum-free(部分)集合が極大とは他のsum-free(部分)集合の真部分集合ではないものを言う。 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve