DFP法
Davidon–Fletcher–Powell法(ダビドン=フレッチャー=パウエル法)またはDFP法とは、あるセカント方程式を満たす解のうち、現在の推定値に最も近く、曲率条件を満たす解を与える式(DFP公式)を用いる準ニュートン法である。名称はウィリアム・ダビドン、ロジャー・フレッチャー、マイケル・パウエルに因む。セカント法を多次元問題に一般化したものであり、準ニュートン法としては初めての解法だった。この公式によりヘッセ行列を更新すれば、対称性と正定性が保証される。 所与の関数 のテイラー展開は、その勾配( )、正定値ヘッセ行列 、を用いて以下のように書ける。 また、勾配自体のテイラー展開(セカント方程式)は以下のように書ける。 これをの更新に用いる。 下に示すDFP公式は、対称かつ正定値であり、現在の近似値に最も近い解を与える。 ここで、 とし、は対称正定値行列とした。 対応する逆ヘッセ行列の近似値は、以下の式により与えられる。 は正定値行列と仮定されるため、とは以下の曲率条件を満たす必要がある。 DFP法は非常に効果的だったものの、すぐにその双対である(yとsの役割が入れ替わっている)BFGS法に置き換えられた[1]。 脚注
参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve