楕円型偏微分方程式
数学の分野における楕円型偏微分方程式(だえんがたへんびぶんほうていしき、英: elliptic partial differential equation)とは、一般的な二階の偏微分方程式 で次の条件を満たすもののことを言う: (ここで、暗に を意味している)。 円錐断面や二次形式を分類する際に判別式 を利用するように、二階の偏微分方程式に対しても、ある与えられた点において、同様の分類が行われる。ただし、上の例のように偏微分方程式の慣習として係数のひとつが「2B」であり、これを前提として対応する判別式は となる(詳細については「二階の方程式(英語版)」を参照されたい)。前述の形式は、平面上の楕円の方程式 と同様のものである。この方程式は( である場合には) および へと変わる。これは、標準的な楕円の方程式 に類似している。 一般的に、n 個の独立変数 x1, x2 , ..., xn が与えられた際に、二階の線型偏微分方程式は次の形で記述される:
ここで、L は楕円型作用素である。 例えば、三次元 (x,y,z) においては が得られる。ここで、u が完全分離可能(すなわち、u(x,y,z)=u(x)u(y)u(z))である場合には、 が得られる。 これは、楕円体の方程式 と対応している。 いちばん簡単な例は, 関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve