^Trefethen, L. N. (2019). Approximation theory and approximation practice (Vol. 164). SIAM.
^Powell, M. J. D. (1981). Approximation theory and methods. Cambridge University Press.
^Achieser, N. I. (2013). Theory of approximation. Courier Corporation.
^ abKoblitz, N. (1994). A course in number theory and cryptography (Vol. 114). Springer Science & Business Media.
^ abWashington, L. C. (2008). Elliptic curves: number theory and cryptography. CRC Press.
^ abLoxton, J. H., Loxton, J., & Hitchin, N. J. (Eds.). (1990). Number theory and cryptography (Vol. 154). Cambridge University Press.
^ abKraft, J., & Washington, L. (2018). An introduction to number theory with cryptography. CRC Press.
^Rektorys, K. (2013). Survey of applicable mathematics (Vol. 280). Springer.
^Bender, E. A. (1973). Teaching Applicable Mathematics. The American Mathematical Monthly, 80(3), 302-307.
^Feferman, S. (1992, January). Why a little bit goes a long way: Logical foundations of scientifically applicable mathematics. In PSA: Proceedings of the Biennial meeting of the Philosophy of Science Association (Vol. 1992, No. 2, pp. 442-455). Philosophy of Science Association.
^Stolz, M. (2002), "The History Of Applied Mathematics And The History Of Society", Synthese, 133 (1): 43–57, doi:10.1023/A:1020823608217, S2CID 34271623
^University of Strathclyde (17 January 2008), Industrial Mathematics, archived from the original on 2012-08-04, retrieved 8 January 2009
^ abPerspectives on Mathematics Education: Papers Submitted by Members of the Bacomet Group, pgs 82–3. Editors: H. Christiansen, A.G. Howson, M. Otte. Volume 2 of Mathematics Education Library; Springer Science & Business Media, 2012. ISBN 9400945043, 9789400945043.
^ abSurvey of Applicable Mathematics, pg xvii (Foreword). K. Rektorys; 2nd edition, illustrated. Springer, 2013. ISBN 9401583080, 9789401583084.
^INTERNATIONAL CONFERENCE ON APPLICABLE MATHEMATICS (ICAM-2016). Archived 2017-03-23 at the Wayback Machine The Department of Mathematics, Stella Maris College.
^Von Zur Gathen, J., & Gerhard, J. (2013). Modern computer algebra. Cambridge University Press.
^Geddes, K. O., Czapor, S. R., & Labahn, G. (1992). Algorithms for computer algebra. Springer Science & Business Media.
^Albrecht, R. (2012). Computer algebra: symbolic and algebraic computation (Vol. 4). Springer Science & Business Media.
^Mignotte, M. (2012). Mathematics for computer algebra. Springer Science & Business Media.
^Stoer, J., & Bulirsch, R. (2013). Introduction to numerical analysis. Springer Science & Business Media.
^Conte, S. D., & De Boor, C. (2017). Elementary numerical analysis: an algorithmic approach. Society for Industrial and Applied Mathematics.
^Greenspan, D. (2018). Numerical Analysis. CRC Press.
^Linz, P. (2019). Theoretical numerical analysis. Courier Dover Publications.
^For example see, The Tait Institute: History (2nd par.). Accessed Nov 2012.
^Dept of Applied Mathematics & Theoretical Physics. Queen's University, Belfast.
^ Ames, W. F. (2014). Numerical methods for partial differential equations. Academic Press.
^West, D. B. (2001). Introduction to graph theory (Vol. 2). Upper Saddle River: Prentice hall.
^Bondy, J. A., & Murty, U. S. R. (1976). Graph theory with applications (Vol. 290). London: Macmillan.
^Bollobás, B. (2013). Modern graph theory (Vol. 184). Springer Science & Business Media.
^Gross, J. L., & Yellen, J. (Eds.). (2003). Handbook of graph theory. CRC Press.
^Brualdi, R. A. (1977). Introductory combinatorics. Pearson Education India.
^Snyman, J. A. (2005). Practical mathematical optimization (pp. 97-148). Springer Science+ Business Media, Incorporated.
^Winston, W. L., & Goldberg, J. B. (2004). Operations research: applications and algorithms (Vol. 3). Belmont: Thomson Brooks/Cole.
^Hillier, F. S. (2012). Introduction to operations research. Tata McGraw-Hill Education.
^Wagner, H. M. (1975). Principles of operations research: with applications to managerial decisions (No. 04; T56. 7, W3 1975.). Englewood Cliffs, NJ: Prentice-Hall.
^Marlow, W. H. (1993). Mathematics for operations research. Courier Corporation.
^Sontag, E. D. (2013). Mathematical control theory: deterministic finite dimensional systems (Vol. 6). Springer Science & Business Media.