Modelo estándar
![]() O Modelo Estándar (abreviado ás veces como SM, do inglés Standard Model) en física de partículas trata de describir os fenómenos coñecidos asociados ó mundo das partículas fundamentais e ás súas interaccións (o comportamento dos seis tipos de quark, seis de leptóns, as catro interaccións fundamentais (ou forzas fundamentais: Interacción nuclear forte, interacción nuclear débil e electromagnetismo ou interacción elecrodébil, e gravitación)e as catro partículas asociadas a elas e o bosón de Higgs.[1] Un dos alicerces do modelo é a identificación de cantidades conservadas nas interaccións entre as partículas fundamentais e a relación entre estas cantidades e o espazo-tempo ou con simetrías internas. O nome 'Modelo Estándar' foi usado por primeira vez nos anos 1970, se ben nos seus comezos, estándar era usado como adxecivo, no sentido de que era o modelo normalmente usado.[1] O modelo estándar ten base experimental e non pode dar explicación a toda a física. Necesita de 18 variables para facer as súas predicións, variables que necesitan ser medidas e axustadas nas ecuacións e que de fieto, ó ser alguna delas medida con máis precisión ten provocado a eliminación de posibilidades teóricas e as predicións correspondentes. Asemade, fai algunhas asuncións sobre o Universo, como que as leis da física son as mesmas en calquera parte do universo, que a probilidade se conserva, que non se roachan as relacións causa-efecto, que sucesos que non intesectan no espazo son independentes, que hai un número finito de partícuas e campos ou a veracidade da relatividade especial e a mecánica cuántica.[1] Segundo o Modelo Estándar toda a materia coñecida esta constituída de partículas de spin semienteiro (fermións) clasificadas en dous grupos dependendo das interaccións que poden sufrir. Así o grupo dos leptóns fórmano aqueles fermións que non sofren a interacción forte. O resto dos fermións fundamentais denomínanse quarks. Tanto uns como outros agrúpanse en tres familias (tamén chamadas xeracións) e os compoñentes de cada unha diferéncianse dos do resto tan só na masa. Na seguinte táboa poden verse as partículas fundamentais no Modelo Estándar.
O Modelo Estándar non contempla a cuarta forza fundamental coñecida da natureza: a forza gravitatoria. As interaccións descríbense dentro do Modelo Estándar por medio de teorías gauge e maniféstanse a través do intercambio de partículas de spin enteiro (bosóns). As dúas primeiras interaccións (débil e electromagnética) están parcialmente unificadas segundo o modelo electrodébil. Porén a unificación das tres forzas non se realiza dentro do Modelo Estándar, senón que se introducen tres constantes de acoplamento (unha por cada interacción). O marco matemático no que se desenvolve o ModeloEstándar é a superposición de tres grupos de simetría: O SU(3)C × O SU(2)L × U(1)E. Na seguinte táboa poden verse os bosóns gauge xunto coas interaccións ás que están asociados e a forza relativa de cada unha destas.
Probas e prediciónsO Modelo Estándar predicía a existencia dos bosóns W e Z, o gluón, e os quarks top (cumio) e charm (encanto) antes de que esas partículas fosen observadas. As súas propiedades preditas foron experimentalmente confirmadas con boa precisión. O Large Electron-Positron collider LEP, no CERN probou varias predicións entre os decaementos dos bosóns Z, e confirmounas. Para obter unha idea do éxito do Modelo Estándar, amósase na seguinte táboa unha comparación entre os valores medidos e preditos dalgunhas cantidades:
Desafíos ó Modelo EstándarAínda non hai indicación experimental da existencia do bosón de Higgs. Ata se o Modelo Estándar tivo grande éxito en explicar os resultados experimentais, ten dous defectos importantes:
Desde que se completou este modelo, realizáronse moitos esforzos para solucionar estes problemas. Unha tentativa para resolver o primeiro defecto é coñecida como grande unificación. As chamadas 'Teorías de grande unificación' (con siglas en inglés 'GUT') hipotetizan que os grupos SU(3), SU(2), e U(1) son na realidade subgrupos dun único grupo de grande simetría. A altas enerxías (abondo máis grandes que as usadas agora na experimentación), a simetría do grupo unificado é preservada; a baixas enerxías, redúcese a SU(3)×SU(2)×U(1) por un proceso coñecido como rotura espontánea de simetría. A primeira teoría deste tipo foi proposta por Georgi e Glashow (no 1974), usando SU(5) como grupo unificador. Unha característica distintiva destas GUT é que, de xeito diverso ó Modelo Estándar, predín a existencia do decaemento do protón. No 1999, o observatorio de neutrinos Super-Kamiokande non informara a observación de ningún protón, o que establece un límite inferior para a [[semivida do protón de 6.7× 1032 anos. Estes e outros experimentos teñen falsado numerosas GUTs, incluíndo SU(5). Outro esforzo para manexar o primeiro defecto foi o desenvolvemento de modelos de preóns, procurando unha estrutura de partículas máis fundamentais que as establecidas polo modelo estándar. Ademais, hai razóns cosmolóxicas polas que se cre que o Modelo Estándar é incompleto. Nel, a materia e a antimateria están relacionadas pola simetría CPT (simetría de carga, paridade e tempo) o que suxire que debera haber igual cantidade de materia e antimateria despois do big-bang (a 'grande explosión' primixenia do Universo). Aínda que a preponderancia da materia no Universo pode ser explicada dicindo que o universo comezou antes de seren aplicadas estas normas, este tipo de explicacións é considerada como pouco elegante e inadecuada polos físicos. Asemade, o Modelo Estándar non prové dun mecanismo para xerar a inflación cósmica (diferente da expansión cósmica) que se cre se produciu ó comezo do Universo. O bosón de Higgs, predito polo Modelo Estándar, non foi observado ata o momento 2007 (aínda que foron observados no LEP (Large Electron-Positron Collider, Grande colisor electrón-positrón) algúns fenómenos relacionados con el). Unha das razóns para a construción do Large Hadron Collider (Gran colisor de hadróns) é que o incremento de enerxía posible nel pode facer observable o Higgs. Ampliación do ModeloA primeira desviación experimental do Modelo Estándar (tal como foi proposto nos 70) chegou no 1998, cando os científicos do Super-Kamiokande publicaron resultados indicando a oscilación neutrino. baixo o modelo, un neutrino sen masa non pode oscilar, polo que esa observación implicaba a existencia de masas do neutrino diferentes de cero. Polo tanto, foi necesario revisar o modelo para permitir neutrinos con masa, o que se fixo incorporando 10 parámetros máis que os iniciais 19. Unha extensión posterior do Modelo Estándar ten como orixe a teoría da supersimetría, que propón un compañeiro supersimétrico para cada partícula existente no Modelo Estándar convencional. As partículas supersimétricas foron xseridas como candidatas para explicar a materia escura. Porén, ditas partículas non foron observadas ata a data, aínda que son unha das ideas máis populares en física teórica das partículas.
Notas
|