Distribución binomialPara outras páxinas con títulos homónimos véxase: Distribución.
A distribución binomial é unha distribución de probabilidade discreta que conta o número de éxitos nunha secuencia de n ensaios de Bernoulli independentes entre si, cunha probabilidade fixa p de que ocorra un éxito no ensaio. Un experimento de Bernoulli caracterízase por ser dicotómico, é dicir, só ten dous posibles resultados. Un destes resultados denomínase éxito e ten unha probabilidade de que suceda p e o outro denomínase fracaso, cunha probabilidade q = 1 - p. Na distribución binomial o experimento repítese n veces, de forma independente, e trátase de calcular a probabilidade dun número determinado de éxitos. Para n = 1, a binomial convértese nunha distribución de Bernoulli. Para representar que unha variable aleatoria X segue unha distribución binomial de parámetros n e p, escríbese: A distribución binomial é a base do test binomial de significación estatística. Experimento binomialExisten moitas situación nas que se presenta unha experiencia binomial. Cada un dos experimentos é independente dos demais (é dicir, a probabilidade do resultado dun experimento non depende do resultado do resto). O resultado de cada experimento só admite dúas categorías (“éxito” e “fracaso”) e as probabilidades deben de ser constantes en todos os experimentos (exprésanse como p e q ou p e 1-p). Desígnase por X a variable que mide o número de éxitos que produciron nos n experimentos. Cando se dan estas circunstancias, dise que a variable X segue unha distribución de probabilidade binomial, e exprésase B(n,p). Exemplos de experimentos que se poden modelizar con esta distribución son:
Características analíticasA súa función de probabilidade é onde sendo as combinacións de en ( elementos tomados de en ) ExemploSe se lanza un dado (con 6 caras) 51 veces e queremos coñecer a probabilidade de que o número 3 saia vinte veces temos que X ~ B(51, 1/6) e a probabilidade sería P(X=20): PropiedadesRelación con outras variables aleatoriasSe tende a infinito e é tal que o produto entre ambos os parámetros tende a , entón a distribución da variable aleatoria binomial tende a unha distribución de Poisson de parámetro . Cando =0.5 e n é moi grande (habitualmente esíxese que ) a distribución binomial pode aproximarse mediante a distribución normal. Propiedades reprodutivasDadas n variables binomiales independentes de parámetros ni (i = 1,..., n) e , a súa suma é tamén unha variable binomial, de parámetros n1+... + nn, e , é dicir, Notas
Véxase taménLigazóns externas
|