Share to: share facebook share twitter share wa share telegram print page

Velocity-addition formula

The special theory of relativity, formulated in 1905 by Albert Einstein, implies that addition of velocities does not behave in accordance with simple vector addition.

In relativistic physics, a velocity-addition formula is an equation that specifies how to combine the velocities of objects in a way that is consistent with the requirement that no object's speed can exceed the speed of light. Such formulas apply to successive Lorentz transformations, so they also relate different frames. Accompanying velocity addition is a kinematic effect known as Thomas precession, whereby successive non-collinear Lorentz boosts become equivalent to the composition of a rotation of the coordinate system and a boost.

Standard applications of velocity-addition formulas include the Doppler shift, Doppler navigation, the aberration of light, and the dragging of light in moving water observed in the 1851 Fizeau experiment.[1]

The notation employs u as velocity of a body within a Lorentz frame S, and v as velocity of a second frame S, as measured in S, and u as the transformed velocity of the body within the second frame.

History

The speed of light in a fluid is slower than the speed of light in vacuum, and it changes if the fluid is moving along with the light. In 1851, Fizeau measured the speed of light in a fluid moving parallel to the light using an interferometer. Fizeau's results were not in accord with the then-prevalent theories. Fizeau experimentally correctly determined the zeroth term of an expansion of the relativistically correct addition law in terms of V/c as is described below. Fizeau's result led physicists to accept the empirical validity of the rather unsatisfactory theory by Fresnel that a fluid moving with respect to the stationary aether partially drags light with it, i.e. the speed is c/n + (1 − 1/n2)V instead of c/n + V, where c is the speed of light in the aether, n is the refractive index of the fluid, and V is the speed of the fluid with respect to the aether.

The aberration of light, of which the easiest explanation is the relativistic velocity addition formula, together with Fizeau's result, triggered the development of theories like Lorentz aether theory of electromagnetism in 1892. In 1905 Albert Einstein, with the advent of special relativity, derived the standard configuration formula (V in the x-direction) for the addition of relativistic velocities.[2] The issues involving aether were, gradually over the years, settled in favor of special relativity.

Galilean relativity

It was observed by Galileo that a person on a uniformly moving ship has the impression of being at rest and sees a heavy body falling vertically downward.[3] This observation is now regarded as the first clear statement of the principle of mechanical relativity. Galileo saw that from the point of view of a person standing on the shore, the motion of falling downwards on the ship would be combined with, or added to, the forward motion of the ship.[4] In terms of velocities, it can be said that the velocity of the falling body relative to the shore equals the velocity of that body relative to ship plus the velocity of the ship relative to the shore.

In general for three objects A (e.g. Galileo on the shore), B (e.g. ship), C (e.g. falling body on ship) the velocity vector of C relative to A (velocity of falling object as Galileo sees it) is the sum of the velocity of C relative to B (velocity of falling object relative to ship) plus the velocity v of B relative to A (ship's velocity away from the shore). The addition here is the vector addition of vector algebra and the resulting velocity is usually represented in the form

The cosmos of Galileo consists of absolute space and time and the addition of velocities corresponds to composition of Galilean transformations. The relativity principle is called Galilean relativity. It is obeyed by Newtonian mechanics.

Special relativity

According to the theory of special relativity, the frame of the ship has a different clock rate and distance measure, and the notion of simultaneity in the direction of motion is altered, so the addition law for velocities is changed. This change is not noticeable at low velocities but as the velocity increases towards the speed of light it becomes important. The addition law is also called a composition law for velocities. For collinear motions, the speed of the object, , e.g. a cannonball fired horizontally out to sea, as measured from the ship, moving at speed , would be measured by someone standing on the shore and watching the whole scene through a telescope as[5] The composition formula can take an algebraically equivalent form, which can be easily derived by using only the principle of constancy of the speed of light,[6] The cosmos of special relativity consists of Minkowski spacetime and the addition of velocities corresponds to composition of Lorentz transformations. In the special theory of relativity Newtonian mechanics is modified into relativistic mechanics.

Standard configuration

The formulas for boosts in the standard configuration follow most straightforwardly from taking differentials of the inverse Lorentz boost in standard configuration.[7][8] If the primed frame is travelling with speed with Lorentz factor in the positive x-direction relative to the unprimed frame, then the differentials are

Divide the first three equations by the fourth,

or

which is

Transformation of velocity (Cartesian components)

in which expressions for the primed velocities were obtained using the standard recipe by replacing v by v and swapping primed and unprimed coordinates. If coordinates are chosen so that all velocities lie in a (common) xy plane, then velocities may be expressed as (see polar coordinates) and one finds[2][9]

Transformation of velocity (Plane polar components)

Details for u


The proof as given is highly formal. There are other more involved proofs that may be more enlightening, such as the one below.

A proof using 4-vectors and Lorentz transformation matrices

Since a relativistic transformation rotates space and time into each other much as geometric rotations in the plane rotate the x- and y-axes, it is convenient to use the same units for space and time, otherwise a unit conversion factor appears throughout relativistic formulae, being the speed of light. In a system where lengths and times are measured in the same units, the speed of light is dimensionless and equal to 1. A velocity is then expressed as fraction of the speed of light.

To find the relativistic transformation law, it is useful to introduce the four-velocities V = (V0, V1, 0, 0), which is the motion of the ship away from the shore, as measured from the shore, and U′ = (U′0, U′1, U′2, U′3) which is the motion of the fly away from the ship, as measured from the ship. The four-velocity is defined to be a four-vector with relativistic length equal to 1, future-directed and tangent to the world line of the object in spacetime. Here, V0 corresponds to the time component and V1 to the x component of the ship's velocity as seen from the shore. It is convenient to take the x-axis to be the direction of motion of the ship away from the shore, and the y-axis so that the xy plane is the plane spanned by the motion of the ship and the fly. This results in several components of the velocities being zero: V2 = V3 = U′3 = 0

The ordinary velocity is the ratio of the rate at which the space coordinates are increasing to the rate at which the time coordinate is increasing:

Since the relativistic length of V is 1, so

The Lorentz transformation matrix that converts velocities measured in the ship frame to the shore frame is the inverse of the transformation described on the Lorentz transformation page, so the minus signs that appear there must be inverted here:

This matrix rotates the pure time-axis vector (1, 0, 0, 0) to (V0, V1, 0, 0), and all its columns are relativistically orthogonal to one another, so it defines a Lorentz transformation.

If a fly is moving with four-velocity U′ in the ship frame, and it is boosted by multiplying by the matrix above, the new four-velocity in the shore frame is U = (U0, U1, U2, U3),

Dividing by the time component U0 and substituting for the components of the four-vectors U′ and V in terms of the components of the three-vectors u′ and v gives the relativistic composition law as

The form of the relativistic composition law can be understood as an effect of the failure of simultaneity at a distance. For the parallel component, the time dilation decreases the speed, the length contraction increases it, and the two effects cancel out. The failure of simultaneity means that the fly is changing slices of simultaneity as the projection of u′ onto v. Since this effect is entirely due to the time slicing, the same factor multiplies the perpendicular component, but for the perpendicular component there is no length contraction, so the time dilation multiplies by a factor of 1/V0 = (1 − v12).

General configuration

Decomposition of 3-velocity u into parallel and perpendicular components, and calculation of the components. The procedure for u is identical.

Starting from the expression in coordinates for v parallel to the x-axis, expressions for the perpendicular and parallel components can be cast in vector form as follows, a trick which also works for Lorentz transformations of other 3d physical quantities originally in set up standard configuration. Introduce the velocity vector u in the unprimed frame and u in the primed frame, and split them into components parallel (∥) and perpendicular (⊥) to the relative velocity vector v (see hide box below) thus then with the usual Cartesian standard basis vectors ex, ey, ez, set the velocity in the unprimed frame to be which gives, using the results for the standard configuration, where · is the dot product. Since these are vector equations, they still have the same form for v in any direction. The only difference from the coordinate expressions is that the above expressions refers to vectors, not components.

One obtains where αv = 1/γv is the reciprocal of the Lorentz factor. The ordering of operands in the definition is chosen to coincide with that of the standard configuration from which the formula is derived.

The algebra


Decomposition into parallel and perpendicular components in terms of V

Either the parallel or the perpendicular component for each vector needs to be found, since the other component will be eliminated by substitution of the full vectors.

The parallel component of u can be found by projecting the full vector into the direction of the relative motion and the perpendicular component of u can be found by the geometric properties of the cross product (see figure above right),

In each case, v/v is a unit vector in the direction of relative motion.

The expressions for u and u can be found in the same way. Substituting the parallel component into

results in the above equation.[10]


Using an identity in and ,[11][nb 1]

and in the forwards (v positive, S → S') direction

where the last expression is by the standard vector analysis formula v × (v × u) = (vu)v − (vv)u. The first expression extends to any number of spatial dimensions, but the cross product is defined in three dimensions only. The objects A, B, C with B having velocity v relative to A and C having velocity u relative to A can be anything. In particular, they can be three frames, or they could be the laboratory, a decaying particle and one of the decay products of the decaying particle.

Properties

The relativistic addition of 3-velocities is non-linear, so in general for real number λ, although it is true that

Also, due to the last terms, is in general neither commutative nor associative

It deserves special mention that if u and v′ refer to velocities of pairwise parallel frames (primed parallel to unprimed and doubly primed parallel to primed), then, according to Einstein's velocity reciprocity principle, the unprimed frame moves with velocity u relative to the primed frame, and the primed frame moves with velocity v′ relative to the doubly primed frame hence (−v′ ⊕ −u) is the velocity of the unprimed frame relative to the doubly primed frame, and one might expect to have uv′ = −(−v′ ⊕ −u) by naive application of the reciprocity principle. This does not hold, though the magnitudes are equal. The unprimed and doubly primed frames are not parallel, but related through a rotation. This is related to the phenomenon of Thomas precession, and is not dealt with further here.

The norms are given by[12] and

Proof

Reverse formula found by using standard procedure of swapping v for v and u for u.

It is clear that the non-commutativity manifests itself as an additional rotation of the coordinate frame when two boosts are involved, since the norm squared is the same for both orders of boosts.

The gamma factors for the combined velocities are computed as

Detailed proof