Share to: share facebook share twitter share wa share telegram print page

Trigonometric moment problem

In mathematics, the trigonometric moment problem is formulated as follows: given a sequence , does there exist a distribution function on the interval such that:[1][2] with for . In case the sequence is finite, i.e., , it is referred to as the truncated trigonometric moment problem.[3]

An affirmative answer to the problem means that are the Fourier-Stieltjes coefficients for some (consequently positive) Radon measure on as distribution function.[4][5][6]

Characterization

The trigonometric moment problem is solvable, that is, is a sequence of Fourier coefficients, if and only if the (n + 1) × (n + 1) Hermitian Toeplitz matrix with for , is positive semi-definite.[7]

The "only if" part of the claims can be verified by a direct calculation. We sketch an argument for the converse. The positive semidefinite matrix defines a sesquilinear product on , resulting in a Hilbert space of dimensional at most n + 1. The Toeplitz structure of means that a "truncated" shift is a partial isometry on . More specifically, let be the standard basis of . Let and be subspaces generated by the equivalence classes respectively . Define an operator by Since can be extended to a partial isometry acting on all of . Take a minimal unitary extension of , on a possibly larger space (this always exists). According to the spectral theorem,[8][9] there exists a Borel measure on the unit circle such that for all integer k For , the left hand side is As such, there is a -atomic measure on , with (i.e. the set is finite), such that[10] which is equivalent to

for some suitable measure .

Parametrization of solutions

The above discussion shows that the truncated trigonometric moment problem has infinitely many solutions if the Toeplitz matrix is invertible.[11][12]

In that case, the solutions to the problem are in bijective correspondence with minimal unitary extensions of the partial isometry .

See also

Notes

  1. ^ Geronimus 1946.
  2. ^ Akhiezer 1965, pp. 180–181.
  3. ^ Schmüdgen 2017, p. 257.
  4. ^ Edwards 1982, pp. 72–73.
  5. ^ Zygmund 2002, p. 11.
  6. ^ Katznelson 2004, p. 40.
  7. ^ Schmüdgen 2017, p. 260.
  8. ^ Simon 2005, pp. 26, 42.
  9. ^ Katznelson 2004, pp. 38–45.
  10. ^ Schmüdgen 2017, p. 261.
  11. ^ Curto & Fialkow 1991, p. 634.
  12. ^ Iokhvidov 1982, pp. 97–98.

References

  • Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis. Philadelphia, PA: Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611976397. ISBN 978-1-61197-638-0.
  • Akhiezer, N.I.; Kreĭn, M.G. (1962). Some Questions in the Theory of Moments. Translations of mathematical monographs. American Mathematical Society. ISBN 978-0-8218-1552-6. {{cite book}}: ISBN / Date incompatibility (help)
  • Curto, Raúl E.; Fialkow, Lawrence A. (1991). "Recursiveness, positivity, and truncated moment problems" (PDF). Houston Journal of Mathematics. 17 (4): 603–635. Retrieved 2025-09-10.
  • Edwards, R. E. (1982). Fourier Series. Vol. 85. New York, NY: Springer New York. doi:10.1007/978-1-4613-8156-3. ISBN 978-1-4613-8158-7.
  • Geronimus, J. (1946). "On the Trigonometric Moment Problem". Annals of Mathematics. 47 (4): 742–761. doi:10.2307/1969232. ISSN 0003-486X. JSTOR 1969232.
  • Iokhvidov, Iosif Semenovich (1982). Hankel and Toeplitz Matrices and Forms. Boston: Birkhäuser. ISBN 978-3-7643-3090-3.
  • Katznelson, Yitzhak (2004). An Introduction to Harmonic Analysis. Cambridge University Press. doi:10.1017/cbo9781139165372. ISBN 978-0-521-83829-0.
  • Schmüdgen, Konrad (2017). The Moment Problem. Graduate Texts in Mathematics. Vol. 277. Cham: Springer International Publishing. doi:10.1007/978-3-319-64546-9. ISBN 978-3-319-64545-2. ISSN 0072-5285.
  • Simon, Barry (2005). Orthogonal polynomials on the unit circle. Part 1. Classical theory. American Mathematical Society Colloquium Publications. Vol. 54. Providence, R.I.: American Mathematical Society. ISBN 978-0-8218-3446-6. MR 2105088.
  • Zygmund, A. (2002). Trigonometric Series (third ed.). Cambridge: Cambridge University Press. ISBN 0-521-89053-5.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya