Table of explosive detonation velocities
This is a compilation of published detonation velocities for various high explosive compounds. Detonation velocity is the speed with which the detonation shock wave travels through the explosive. It is a key, directly measurable indicator of explosive performance, but depends on density which must always be specified, and may be too low if the test charge diameter is not large enough. Especially for little studied explosives there may be divergent published values due to charge diameter issues. In liquid explosives, like nitroglycerin, there may be two detonation velocities, one much higher than the other. The detonation velocity values presented here are typically for the highest practical density which maximizes achievable detonation velocity.[ 1]
The velocity of detonation is an important indicator for overall energy and power of detonation, and in particular for the brisance or shattering effect of an explosive which is due to the detonation pressure. The pressure can be calculated using Chapman-Jouguet theory from the velocity and density.
Table of Explosive Detonation Velocities
Explosive class
Explosive name
Abbreviation
Detonation velocity (m/s)
Test Density (g/cm3 )
Aromatic
1,3,5-trinitrobenzene
TNB
7,450
1.60
Aromatic
1,3,5-Triazido-2,4,6-trinitrobenzene
TATNB
7,300
1.71
Aromatic
4,4’-Dinitro-3,3’-diazenofuroxan
DDF
10,000
2.02
Aromatic
Trinitrotoluene
TNT
6,900
1.60
Aromatic
Diazodinitrophenol
DDNP
7,100
1.63
Aromatic
Trinitroaniline
TNA
7,300
1.72
Aromatic
Tetryl
7,570
1.71
Aromatic
Picric acid
TNP
7,350
1.70
Aromatic
Ammonium picrate (Dunnite)
7,150
1.60
Aromatic
Methyl picrate
6,800
1.57
Aromatic
Ethyl picrate
6,500
1.55
Aromatic
Picryl chloride
7,200
1.74
Aromatic
Trinitrocresol
6,850
1.62
Aliphatic
Nitrourea
NU
6,860
1.73
Aromatic
Lead styphnate
5,200
2.90
Aromatic
Triaminotrinitrobenzene
TATB
7,350
1.80
Aliphatic
1,1-diamino-2,2-dinitroethene
DADNE, FOX-7
8,335
1.76
Aliphatic
1,3,3-Trinitroazetidine
TNAZ
9,597
1.84
Inorganic
Ammonium perchlorate
AP[ 2]
6,300
1.95
Aliphatic
Methyl nitrate
MN[ 3]
6,818
1.22
Aliphatic
Nitroglycol/ethylene glycol dinitrate
EGDN
8,300
1.49
Aliphatic
Nitroglycerine
NG
7,700
1.59
Aliphatic
isopropyl nitrate
IPN
5,400
0.86
Aliphatic
Mannitol hexanitrate
MHN
8,260
1.73
Aliphatic
Pentaerythritol tetranitrate
PETN
8,400
1.76
Aliphatic
Erythritol tetranitrate
ETN
8,200
1.72
Aliphatic
Xylitol pentanitrate
XPN
7,100
1.852
Aliphatic
Ethylenedinitramine
EDNA
7,570
1.65
Aliphatic
Nitroguanidine
NQ
8,200
1.70
Aliphatic
Cyclotrimethylenetrinitramine
RDX
8,550
1.762
Aliphatic
Cyclotetramethylene tetranitramine
HMX
9,100
1.89
Aliphatic
Hexanitrodiphenylamine
HND
7,100
1.64
Aliphatic
Hexanitrohexaazaisowurtzitane
HNIW or CL-20[ 4]
9,500
2.04
Aliphatic
Dinitroglycoluril
DINGU
8,450
1.94
Aliphatic
Tetranitroglycoluril
TNGU, Sorguyl, Sorguryl
9,150
1.95
Aliphatic
Hexanitrohexaazatricyclododecanedione
HHTDD, DTNGU, Naza/Namsorguyl/uryl HnHaza/amTcDglcDuryl
9,700
2.16
Aliphatic
5-Nitro-2,4-dihydro-3H-1,2,4-triazole-3-one [ 5]
NTO
8,564
1.93
Aliphatic
Octanitrocubane
ONC
10,100
2.00
Aliphatic
Nitrocellulose
NC
7,050
1.20
Aliphatic
Urea nitrate
UN
4,700
1.67
Aliphatic
Hydrogen peroxide-urea
UHP
3,940
0.85
Aliphatic
Triacetone triperoxide
AP or TATP
5,300
1.18
Aliphatic
Methyl ethyl ketone peroxide
MEKP
5,200
1.17
Aliphatic
Hexamethylene triperoxide diamine
HMTD
4,500
0.88
Inorganic
Mercury fulminate
4,250
3.00
Inorganic
Potassium perchlorate aluminium mixture
KClO4 [ 6]
4,600
1.5
Inorganic
Lead azide
4,630
3.00
Inorganic
Nickel hydrazine nitrate
NHN
8,150
1.70
Inorganic
Silver azide
4,000
4.00
Aliphatic
Ammonium nitrate/fuel oil
AN/FO
4,940
1.30
Inorganic
Ammonium nitrate/hexamin
AMT
5,000
2.00
Inorganic
Ammonium nitrate/sugar
Ansu
3,400
1.75
Aliphatic
Nitromethane
NM
6,400
1.1371
Inorganic
Armstrong's mixture
AM
4,500
1.50
Aliphatic
Methylene dinitroamine[ 7] [ 8]
MEDINA
8,700
1.65
Explosive class
Explosive name
Abbreviation
Detonation velocity (m/s)
Test Density (g/cm3 )
See also
References
^ Cooper, Paul W. (1996). Explosives Engineering , New York: Wiley-VCH. ISBN 0-471-18636-8
^ Shevchenko, A. A.; Dolgoborodov, A Yu; Brazhnikov, M. A.; Kirilenko, V. G. (2018). "Pseudoideal detonation of mechanoactivated mixtures of ammonium perchlorate with nanoaluminum" . Journal of Physics: Conference Series . 946 (1): 012055. Bibcode :2018JPhCS.946a2055S . doi :10.1088/1742-6596/946/1/012055 . {{cite journal }}
: CS1 maint: article number as page number (link )
^ Kozak, G.D. (1998). "Measurement and calculation of the ideal detonation velocity for liquid nitrocompounds". Combust Explos Shock Waves . 34 (5): 584. Bibcode :1998CESW...34..581K . doi :10.1007/BF02672682 . S2CID 98738029 .
^ Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. (2012). "High Power Explosive with Good Sensitivity: A 2:1 Cocrystal of CL-20:HMX". Crystal Growth & Design . 12 (9): 4311. Bibcode :2012CrGrD..12.4311B . doi :10.1021/cg3010882 .
^ Viswanath DS, Ghosh TK, Boddu VM. (2018) 5-Nitro-2,4-Dihydro-3H-1,2,4-Triazole-3-One (NTO). Chapter 5 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties. Springer. doi :10.1007/978-94-024-1201-7_5
^ "Data" (PDF) . www.dtic.mil. Retrieved 2019-12-15 .[dead link ]
^ PubChem. "Medina" . pubchem.ncbi.nlm.nih.gov . Retrieved 2024-05-20 .
^ "methylenedinitramine | CH4N4O4 | ChemSpider" . www.chemspider.com . Retrieved 2024-05-20 .