Property of group subsets (mathematics)
In mathematics , a nonempty subset S of a group G is said to be symmetric if it contains the inverses of all of its elements.
Definition
In set notation a subset
S
{\displaystyle S}
of a group
G
{\displaystyle G}
is called symmetric if whenever
s
∈
S
{\displaystyle s\in S}
then the inverse of
s
{\displaystyle s}
also belongs to
S
.
{\displaystyle S.}
So if
G
{\displaystyle G}
is written multiplicatively then
S
{\displaystyle S}
is symmetric if and only if
S
=
S
−
1
{\displaystyle S=S^{-1}}
where
S
−
1
:=
{
s
−
1
:
s
∈
S
}
.
{\displaystyle S^{-1}:=\left\{s^{-1}:s\in S\right\}.}
If
G
{\displaystyle G}
is written additively then
S
{\displaystyle S}
is symmetric if and only if
S
=
−
S
{\displaystyle S=-S}
where
−
S
:=
{
−
s
:
s
∈
S
}
.
{\displaystyle -S:=\{-s:s\in S\}.}
If
S
{\displaystyle S}
is a subset of a vector space then
S
{\displaystyle S}
is said to be a symmetric set if it is symmetric with respect to the additive group structure of the vector space; that is, if
S
=
−
S
,
{\displaystyle S=-S,}
which happens if and only if
−
S
⊆
S
.
{\displaystyle -S\subseteq S.}
The symmetric hull of a subset
S
{\displaystyle S}
is the smallest symmetric set containing
S
,
{\displaystyle S,}
and it is equal to
S
∪
−
S
.
{\displaystyle S\cup -S.}
The largest symmetric set contained in
S
{\displaystyle S}
is
S
∩
−
S
.
{\displaystyle S\cap -S.}
Sufficient conditions
Arbitrary unions and intersections of symmetric sets are symmetric.
Any vector subspace in a vector space is a symmetric set.
Examples
In
R
,
{\displaystyle \mathbb {R} ,}
examples of symmetric sets are intervals of the type
(
−
k
,
k
)
{\displaystyle (-k,k)}
with
k
>
0
,
{\displaystyle k>0,}
and the sets
Z
{\displaystyle \mathbb {Z} }
and
(
−
1
,
1
)
.
{\displaystyle (-1,1).}
If
S
{\displaystyle S}
is any subset of a group, then
S
∪
S
−
1
{\displaystyle S\cup S^{-1}}
and
S
∩
S
−
1
{\displaystyle S\cap S^{-1}}
are symmetric sets.
Any balanced subset of a real or complex vector space is symmetric.
See also
References
R. Cristescu, Topological vector spaces, Noordhoff International Publishing, 1977.
Rudin, Walter (1991). Functional Analysis . International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math . ISBN 978-0-07-054236-5 . OCLC 21163277 .
Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces . Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666 . OCLC 144216834 .
Schaefer, Helmut H. ; Wolff, Manfred P. (1999). Topological Vector Spaces . GTM . Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0 . OCLC 840278135 .
Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels . Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1 . OCLC 853623322 .
This article incorporates material from symmetric set on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics
Linear equations Matrices
Matrix
Matrix addition
Matrix multiplication
Basis transformation matrix
Characteristic polynomial
Spectrum
Trace
Eigenvalue, eigenvector and eigenspace
Cayley–Hamilton theorem
Jordan normal form
Weyr canonical form
Rank
Inverse , Pseudoinverse
Adjugate , Transpose
Dot product
Symmetric matrix , Skew-symmetric matrix
Orthogonal matrix , Unitary matrix
Hermitian matrix , Antihermitian matrix
Positive-(semi)definite
Pfaffian
Projection
Spectral theorem
Perron–Frobenius theorem
Diagonal matrix , Triangular matrix , Tridiagonal matrix
Block matrix
Sparse matrix
Hessenberg matrix , Hessian matrix
Vandermonde matrix
Stochastic matrix , Toeplitz matrix , Circulant matrix , Hankel matrix
(0,1)-matrix
List of matrices
Matrix decompositions Relations and computations Vector spaces Structures Multilinear algebra Affine and projective Numerical linear algebra