The switching lemma describes the behavior of a depth-2 circuit under random restriction, i.e. when randomly fixing most of the coordinates to 0 or 1. Specifically, from the lemma, it follows that a formula in conjunctive normal form (that is, an AND of ORs) becomes a formula in disjunctive normal form (an OR of ANDs) under random restriction, and vice versa. This "switching" gives the lemma its name.
Statement
Consider a width- formula in disjunctive normal form, the OR of clauses which are the AND of w literals ( or its negation ). For example, is an example of a formula in this form with width 2.
Let denote the formula under a random restriction: each is set independently to 0 or 1 with probability . Then, for a sufficiently large constant C, the switching lemma states that
Intuitively, the switching lemma holds because DNF formulas shrink significantly under random restriction: when a literal in a clause is set to 0, the whole AND clause evaluates to zero, and therefore can be discarded.
The switching lemma is a key tool used for understanding the circuit complexity class AC0, which consists of constant-depth circuits consisting of AND, OR, and NOT. Håstad's initial application of this lemma was to establish tight exponential lower bounds for such circuits computing PARITY, improving on the prior super-polynomial lower bounds of Merrick Furst, James Saxe and Michael Sipser[3] and independently Miklós Ajtai.[4] This is done by applying the switching lemma times, where is the depth of the circuit: each application removes a layer of the circuit until one is left with a very simple circuit, whereas PARITY is still PARITY under random restriction, and so remains complex. So, a circuit that computes PARITY must have high depth.[5]
The switching lemma is the basis for bounds on the Fourier spectrum of AC0 circuits[5] and algorithms for learning such circuits.[6]
^Merrick Furst, James Saxe and Michael Sipser, "Parity, Circuits, and the Polynomial-Time Hierarchy", Annu. Intl. Symp. Found.Computer Sci., 1981, Theory of Computing Systems, vol. 17, no. 1, 1984, pp. 13–27, doi:10.1007/BF01744431