Integral transform generalizing both Laplace and Sumudu transforms
In mathematics , the Shehu transform is an integral transform which generalizes both the Laplace transform and the Sumudu integral transform. It was introduced by Shehu Maitama and Weidong Zhao[ 1] [ 2] [ 3] in 2019 and applied to both ordinary and partial differential equations.[ 4] [ 3] [ 5] [ 6] [ 7] [ 8]
The Shehu transform of a function
f
(
t
)
{\displaystyle f(t)}
is defined over the set of functions
A
=
{
f
(
t
)
:
∃
M
,
p
1
,
p
2
>
0
,
|
f
(
t
)
|
<
M
exp
(
|
t
|
/
p
i
)
,
if
t
∈
(
−
1
)
i
×
[
0
,
∞
)
}
{\displaystyle A=\{f(t):\exists M,p_{1},p_{2}>0,|f(t)|<M\exp(|t|/p_{i}),\,\,\,{\text{if}}\,\,\,t\in (-1)^{i}\times [0,\,\infty )\}}
as
S
[
f
(
t
)
]
=
F
(
s
,
u
)
=
∫
0
∞
exp
(
−
s
t
u
)
f
(
t
)
d
t
=
lim
α
→
∞
∫
0
α
exp
(
−
s
t
u
)
f
(
t
)
d
t
,
s
>
0
,
u
>
0
,
(
1
)
{\displaystyle \mathbb {S} [f(t)]=F(s,u)=\int _{0}^{\infty }\exp \left(-{\frac {st}{u}}\right)f(t)\,dt=\lim _{\alpha \rightarrow \infty }\int _{0}^{\alpha }\exp \left(-{\frac {st}{u}}\right)f(t)\,dt,\,s>0,\,u>0,\,\,\,\,(1)}
where
s
{\displaystyle s}
and
u
{\displaystyle u}
are the Shehu transform variables.[ 1] The Shehu transform converges to Laplace transform when the variable
u
=
1
{\displaystyle u=1}
.
The inverse Shehu transform of the function
f
(
t
)
{\displaystyle f(t)}
is defined as
f
(
t
)
=
S
−
1
[
F
(
s
,
u
)
]
=
lim
β
→
∞
1
2
π
i
∫
α
−
i
β
α
+
i
β
1
u
exp
(
s
t
u
)
F
(
s
,
u
)
d
s
,
(
2
)
{\displaystyle f(t)=\mathbb {S} ^{-1}[F(s,u)]=\lim _{\beta \rightarrow \infty }{\frac {1}{2\pi i}}\int _{\alpha -i\beta }^{\alpha +i\beta }{\frac {1}{u}}\exp \left({\frac {st}{u}}\right)F(s,u)ds,\,\,\,\,(2)}
where
s
{\displaystyle s}
is a complex number and
α
{\displaystyle \alpha }
is a real number.[ 1]
Properties and theorems
Properties of the Shehu transform[ 1] [ 3]
Property
Explanation
Linearity
Let the functions
α
f
(
t
)
{\displaystyle \alpha f(t)}
and
β
w
(
t
)
{\displaystyle \beta w(t)}
be in set A. Then
S
[
α
f
(
t
)
+
β
w
(
t
)
]
=
α
S
[
f
(
t
)
]
+
β
S
[
w
(
t
)
]
.
{\displaystyle {\mathbb {S} }\left[\alpha f(t)+\beta w(t)\right]=\alpha {\mathbb {S} }\left[f(t)\right]+\beta {\mathbb {S} }\left[w(t)\right].}
Change of scale
Let the function
f
(
β
t
)
{\displaystyle f(\beta t)}
be in set A, where
β
{\displaystyle \beta }
in an arbitrary constant. Then
S
[
f
(
β
t
)
]
=
1
β
F
(
s
β
,
u
)
.
{\displaystyle {\mathbb {S} }\left[f(\beta t)\right]={\frac {1}{\beta }}F\left({\frac {s}{\beta }},u\right).}
Exponential shifting
Let the function
exp
(
α
t
)
f
(
t
)
{\displaystyle \exp \left(\alpha t\right)f(t)}
be in set A and
α
{\displaystyle \alpha }
is an arbitrary constant. Then
S
[
exp
(
α
t
)
f
(
t
)
]
=
F
(
s
−
α
u
,
u
)
.
{\displaystyle {\mathbb {S} }\left[\exp \left(\alpha t\right)f(t)\right]=F(s-\alpha u,u).}
Multiple shift
Let
S
[
f
(
t
)
]
=
F
(
s
,
u
)
{\displaystyle {\mathbb {S} }\left[f(t)\right]=F(s,u)}
and
f
(
t
)
∈
A
{\displaystyle f(t)\in A}
. Then
S
[
t
n
f
(
t
)
]
=
(
−
u
)
n
d
n
d
s
n
F
(
s
,
u
)
.
{\displaystyle {\mathbb {S} }\left[t^{n}f(t)\right]=(-u)^{n}{\frac {d^{n}}{ds^{n}}}F(s,u).}
Theorems
S
[
∫
0
t
f
(
ζ
)
d
ζ
]
=
u
s
F
(
s
,
u
)
,
{\displaystyle {\mathbb {S} }\left[\int _{0}^{t}f(\zeta )d\zeta \right]={\frac {u}{s}}F(s,u),}
where
S
[
f
(
ζ
)
]
=
F
(
s
,
u
)
{\displaystyle {\mathbb {S} }\left[f(\zeta )\right]=F(s,u)}
and
f
(
ζ
)
∈
A
.
{\displaystyle f(\zeta )\in A.}
[ 1] [ 3]
If the function
f
(
n
)
(
t
)
{\displaystyle f^{(n)}(t)}
is the nth derivative of the function
f
(
t
)
∈
A
{\displaystyle f(t)\in A}
with respect to
t
{\displaystyle t}
, then
S
[
f
(
n
)
(
t
)
]
=
(
s
u
)
n
F
(
s
,
u
)
−
∑
k
=
0
n
−
1
(
s
u
)
n
−
(
k
+
1
)
f
(
k
)
(
0
)
.
{\displaystyle {\mathbb {S} }\left[f^{(n)}(t)\right]=\left({\frac {s}{u}}\right)^{n}F(s,u)-\sum _{k=0}^{n-1}\left({\frac {s}{u}}\right)^{n-(k+1)}f^{(k)}(0).}
[ 1] [ 3]
Let the functions
f
(
t
)
{\displaystyle f(t)}
and
g
(
t
)
{\displaystyle g(t)}
be in set A. If
F
(
s
,
u
)
{\displaystyle F(s,u)}
and
G
(
s
,
u
)
{\displaystyle G(s,u)}
are the Shehu transforms of the functions
f
(
t
)
{\displaystyle f(t)}
and
g
(
t
)
{\displaystyle g(t)}
respectively. Then
S
[
(
f
∗
g
)
(
t
)
]
=
F
(
s
,
u
)
G
(
s
,
u
)
.
{\displaystyle {\mathbb {S} }\left[(f*g)(t)\right]=F(s,u)G(s,u).}
Where
f
∗
g
{\displaystyle f*g}
is the convolution of two functions
f
(
t
)
{\displaystyle f(t)}
and
g
(
t
)
{\displaystyle g(t)}
which is defined as
∫
0
t
f
(
τ
)
g
(
t
−
τ
)
d
τ
=
∫
0
t
f
(
t
−
τ
)
g
(
τ
)
d
τ
.
{\displaystyle \int _{0}^{t}f(\tau )g(t-\tau )d\tau =\int _{0}^{t}f(t-\tau )g(\tau )d\tau .}
[ 1] [ 3]
References
^ a b c d e f g Maitama, Shehu; Zhao, Weidong (2019-02-24). "New Integral Transform: Shehu Transform a Generalization of Sumudu and Laplace Transform for Solving Differential Equations" . International Journal of Analysis and Applications . 17 (2): 167– 190. ISSN 2291-8639 .
^ Maitama, Shehu; Zhao, Weidong (2021). "New Laplace-type integral transform for solving steady heat-transfer problem" . Thermal Science . 25 (1 Part A): 1– 12. arXiv :1905.06157 . doi :10.2298/TSCI180110160M .
^ a b c d e f Maitama, Shehu; Zhao, Weidong (2021-03-16). "Homotopy analysis Shehu transform method for solving fuzzy differential equations of fractional and integer order derivatives" . Computational and Applied Mathematics . 40 (3): 86. doi :10.1007/s40314-021-01476-9 . ISSN 1807-0302 .
^ Akinyemi, Lanre; Iyiola, Olaniyi S. (2020). "Exact and approximate solutions of time-fractional models arising from physics via Shehu transform" . Mathematical Methods in the Applied Sciences . 43 (12): 7442– 7464. Bibcode :2020MMAS...43.7442A . doi :10.1002/mma.6484 . ISSN 1099-1476 .
^ Yadav, L. K.; Agarwal, G.; Gour, M. M.; Akgül, A.; Misro, Md Yushalify; Purohit, S. D. (2024-04-01). "A hybrid approach for non-linear fractional Newell-Whitehead-Segel model" . Ain Shams Engineering Journal . 15 (4): 102645. doi :10.1016/j.asej.2024.102645 . ISSN 2090-4479 . {{cite journal }}
: CS1 maint: article number as page number (link )
^ Sartanpara, Parthkumar P.; Meher, Ramakanta (2023-01-01). "A robust computational approach for Zakharov-Kuznetsov equations of ion-acoustic waves in a magnetized plasma via the Shehu transform" . Journal of Ocean Engineering and Science . 8 (1): 79– 90. Bibcode :2023JOES....8...79S . doi :10.1016/j.joes.2021.11.006 . ISSN 2468-0133 .
^ Abujarad, Eman S.; Jarad, Fahd; Abujarad, Mohammed H.; Baleanu, Dumitru (August 2022). "APPLICATION OF q-SHEHU TRANSFORM ON q-FRACTIONAL KINETIC EQUATION INVOLVING THE GENERALIZED HYPER-BESSEL FUNCTION" . Fractals . 30 (5): 2240179– 2240240. Bibcode :2022Fract..3040179A . doi :10.1142/S0218348X2240179X . ISSN 0218-348X .
^ Mlaiki, Nabil; Jamal, Noor; Sarwar, Muhammad; Hleili, Manel; Ansari, Khursheed J. (2025-04-29). "Duality of Shehu transform with other well known transforms and application to fractional order differential equations" . PLOS ONE . 20 (4): e0318157. Bibcode :2025PLoSO..2018157M . doi :10.1371/journal.pone.0318157 . ISSN 1932-6203 . PMC 12040285 . PMID 40299951 . {{cite journal }}
: CS1 maint: article number as page number (link )