Sensitivity analysis of an EnergyPlus modelSensitivity analysis identifies how uncertainties in input parameters affect important measures of building performance, such as cost, indoor thermal comfort, or CO2 emissions. Input parameters for buildings fall into roughly three categories:
Each parameter has a different distribution of possible values. Sensitivity analysis is an effective way of identifying which parameters influence simulation results the most, and thus need more attention during design. More specifically, sensitivity analysis qualifies how much each parameter affects the results, either individually or in combination (synergistic or antagonistic), and quantifies the variance in possible outcomes, such as energy costs, and is thus a very powerful quantitative tool for decision making. EnergyPlusEnergyPlus[1] is a whole-building energy simulation program that engineers, architects, and researchers use to model both energy consumption — for heating, cooling, ventilation, lighting, and process and plug loads — and water use in buildings. Its development is funded by the U.S. Department of Energy Building Technologies Office.[1] EnergyPlus is a console-based program that reads input and writes output to text files. Several comprehensive graphical interfaces for EnergyPlus are also available. Main features
Stand-alone vs coupled simulationEnergyPlus is normally used as a stand-alone command-line application or together with one of many free or commercial GUIs. However, EnergyPlus can be linked with other applications to simulate more advanced numerical models. One method is BCVTB[2] (Building Controls Virtual Test Bed), which allows users to couple different simulation programs for co-simulation, and to couple simulation programs with actual hardware. For example, the BCVTB can simulate a building in EnergyPlus and the HVAC and control system in Modelica, exchanging data between them as they simulate. Programs that can be linked to BCVTB include EnergyPlus, Modelica (OpenModelica or Dymola), Functional Mock-up Units, MATLAB, and Simulink, Ray tracing (physics)|ray-tracing, ESP-r, TRNSYS, BACnet stack. Applications for sensitivity analysis with EnergyPlusThere exist many software tools that can automate sensitivity analysis to various degrees. Here is a non-exhaustive list. Most of these tools have multiple options, including one-at-a-time sensitivity analysis, multidimensional discrete parametric, continuous low-discrepancy distributions, and pareto-front optimization (listed alphabetically):
Examples of sensitivity analysesExample 1: Simulation of dwelling[11]A modern house which is located in Upper Austria is considered for the sensitivity analysis of construction materials. The building to be simulated is a modern two-story house with a cellar. The volume of the building is approximately 761 m^3. The house is located at Hagenberg in Upper Austria. The walls are made of 25 cm thick bricks without insulation except for the cellar. The windows and glassdoors are standard double glazed with an intermediate layer of air Example 2: Simulation of school[12]An elementary school is considered for the sensitivity analysis of occupancy. Example 3: Experiments on material properties[11]The experiments were performed in the following way:
Following this procedure mean absolute error (MAE) can be calculated for all values of all ranges. It assumed that the material properties are independent of each other. Therefore, each material property will be varied at a time, leaving the others constant at the default values (from EnergyPlus) and measured the mean absolute error (MAE) between the real indoor and the simulated temperatures. The range of material properties was given by an expert.
The specific room under study has a lot of fenestration, so it is not so surprising to see that the influence of the solar transmittance of the windows is the most influential of all material properties analyzed. The next influential factor is the conductivity of the bricks, followed by the thermal absorptance and the specific heat of the bricks. Example 4: Experiments of occupancy variance[12][infringing link?]Important parameters in a warm climate zone:
Important parameters in a cold climate zone:
See also
References
|