Rate at which particles are scattered by a material
In physics, the scattering rate describes the rate at which a beam of particles is scattered while passing through a material. It represents the probability per unit time that a particle will be deflected from its original trajectory by an interaction, such as with impurities or phonons in a crystal lattice. The scattering rate, often denoted by or , is a crucial concept in solid-state physics and condensed matter physics, as it determines various material properties, including electrical conductivity and thermal conductivity.
The interaction picture
Define the unperturbed Hamiltonian by , the time dependent perturbing Hamiltonian by and total Hamiltonian by .
The eigenstates of the unperturbed Hamiltonian are assumed to be
where, the zeroth-order term and first-order term are
The transition rate
The probability of finding is found by evaluating .
In case of constant perturbation, is calculated by
Using the equation which is
The transition rate of an electron from the initial state to final state is given by
where and are the energies of the initial and final states including the perturbation state and ensures the -function indicate energy conservation.
The scattering rate
The scattering rate w(k) is determined by summing all the possible finite states k' of electron scattering from an initial state k to a final state k', and is defined by
The integral form is
References
C. Hamaguchi (2001). Basic Semiconductor Physics. Springer. pp. 196–253.