There are unique 3 degrees of rectifications in regular 8-polytopes. Vertices of the rectified 8-simplex are located at the edge-centers of the 8-simplex. Vertices of the birectified 8-simplex are located in the triangular face centers of the 8-simplex. Vertices of the trirectified 8-simplex are located in the tetrahedral cell centers of the 8-simplex.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S1 8. It is also called 06,1 for its branching Coxeter-Dynkin diagram, shown as . Acronym: rene (Jonathan Bowers)[1]
The Cartesian coordinates of the vertices of the rectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,0,1,1). This construction is based on facets of the rectified 9-orthoplex.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S2 8. It is also called 05,2 for its branching Coxeter-Dynkin diagram, shown as . Acronym: brene (Jonathan Bowers)[2]
The Cartesian coordinates of the vertices of the birectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,1). This construction is based on facets of the birectified 9-orthoplex.
E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as S3 8. It is also called 04,3 for its branching Coxeter-Dynkin diagram, shown as . Acronym: trene (Jonathan Bowers)[3]
Coordinates
The Cartesian coordinates of the vertices of the trirectified 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,1). This construction is based on facets of the trirectified 9-orthoplex.
H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, wiley.com, ISBN978-0-471-01003-6
(Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]