Share to: share facebook share twitter share wa share telegram print page

Proizvolov's identity

In mathematics, Proizvolov's identity is an identity concerning sums of differences of positive integers. The identity was posed by Vyacheslav Proizvolov as a problem in the 1985 All-Union Soviet Student Olympiads.[1]

To state the identity, take the first 2N positive integers,

1, 2, 3, ..., 2N − 1, 2N,

and partition them into two subsets of N numbers each. Arrange one subset in increasing order:

Arrange the other subset in decreasing order:

Then the sum

is always equal to N2.

Example

Take for example N = 3. The set of numbers is then {1, 2, 3, 4, 5, 6}. Select three numbers of this set, say 2, 3 and 5. Then the sequences A and B are:

A1 = 2, A2 = 3, and A3 = 5;
B1 = 6, B2 = 4, and B3 = 1.

The sum is

which indeed equals 32.

Proof

For any , we have: . For this reason, it suffices to establish that the sets and : coincide. Since the numbers are all distinct, it suffices to show that for any , . Assume the contrary that this is false for some , and consider positive integers . Clearly, these numbers are all distinct (due to the construction), but there are at most of them, which is a contradiction.

Notes

References

  • Savchev, Svetoslav; Andreescu, Titu (2002), Mathematical miniatures, Anneli Lax New Mathematical Library, vol. 43, Mathematical Association of America, ISBN 0-88385-645-X.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya