A nicking enzyme (or nicking endonuclease) is an enzyme that cuts only one strand of a double-stranded DNA or RNA molecule[1] at a specific recognition nucleotide sequence known as the restriction site. Such enzymes hydrolyze (cut) only one strand of the DNA duplex, to produce DNA molecules that are “nicked”, rather than cleaved.[2][3]
They can be used for strand-displacement amplification,[4]Nicking Enzyme Amplification Reaction, exonucleolytic degradation, the creation of small gaps,[5] or nick translation.[6] The latter process has been successfully used to incorporate both radioactively labelled nucleotides and fluorescent nucleotides allowing specific regions on a double stranded DNA to be studied.[6][7] Over 200 nicking enzymes have been studied, and 13 of these are available commercially[8] and are routinely used for research and in commercial products.
^Morgan RD, Kong H, et al. (November 2000). "Characterization of the specific DNA nicking activity of restriction endonuclease N.BstNBI". Biol. Chem. 381 (11): 1123–5. doi:10.1515/BC.2000.137. PMID11154070. S2CID22472698.
^Wang H, Hays JB (October 2001). "Simple and rapid preparation of gapped plasmid DNA for incorporation of oligomers containing specific DNA lesions". Mol. Biotechnol. 19 (2): 133–40. doi:10.1385/MB:19:2:133. PMID11725483. S2CID22156627.
^ abRigby PW, Dieckmann M, Rhodes C, Berg P (June 1977). "Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I". J. Mol. Biol. 113 (1): 237–51. doi:10.1016/0022-2836(77)90052-3. PMID881736.