In mathematics, a microdifferential operator is a linear operator on a cotangent bundle (phase space) that generalizes a differential operator and appears in the framework of microlocal analysis as well as in the Kyoto school of algebraic analysis.
The notion was originally introduced by L. Boutet de Monvel and P. Krée[1] as well as by M. Sato, T. Kawai and M. Kashiwara.[2] There is also an approach due to J. Sjöstrand.[3]
Definition
We first define the sheaf
of formal microdifferential operators on the cotangent bundle
of an open subset
.[4] A section of that sheaf over an open subset
is a formal series: for some integer m,

where each
is a holomorphic function on
that is homogeneous of degree
in the second variable.
The sheaf
of microdifferential operators on
is then the subsheaf of
consisting of those secctions satisfying the growh condition on the negative terms; namely, for each compact subset
, there exists an
such that
[5]
See also
Reference
Notes
Works
- Aoki, T., Calcul exponentiel des opérateurs microdifférentiels d'ordre infini, I, Ann. Inst. Fourier, Grenoble, 33–4 (1983), 227–250.
- Boutet De Monvel, Louis ; Krée, Paul, Pseudo-differential operators and Gevrey classes, Annales de l'Institut Fourier, Volume 17 (1967) no. 1, pp. 295-323
- M. Sato, T. Kawai and M. Kashiwara, Microfunctions and pseudo-differential equations, in: Lecture Notes in Math. 287, Springer, 1973, 265–529.
- Schapira, Pierre (1985). Microdifferential Systems in the Complex Domain. Grundlehren der mathematischen Wissenschaften. Vol. 269. Springer. doi:10.1007/978-3-642-61665-5. ISBN 978-3-642-64904-2.
- Sjöstrand, Johannes. Singularités analytiques microlocales, dans Singularités analytiques microlocales - équation de Schrödinger et propagation des singularités..., Astérisque, no. 95 (1982), pp. iii-166. https://www.numdam.org/item/AST_1982__95__R3_0/
Further reading