Share to: share facebook share twitter share wa share telegram print page

Mashhoon effect

In physics, the Mashhoon effect describes the coupling of the intrinsic spin of a particle with the angular velocity of a rotating observer.[1] The effect is named after Iranian-American physicist Bahram Mashhoon, who first formulated its existence in 1988.[2]

The effect considers quantum mechanics in a rotating frame of reference, which leads to a coupling of intrinsic spin with the angular velocity of the rotation of a measuring device. In interferometry, the intrinsic spin-rotation coupling leads to a phase shift that is generally smaller than the Sagnac phase shift, which is due to the coupling of the orbital angular momentum of the particle with the rotation of the interferometer. The intrinsic spin-rotation coupling is independent of the inertial mass of the particle and originates from the tendency of intrinsic spin to keep its direction with respect to a background inertial frame ("inertia of intrinsic spin"). From the standpoint of observers that are spatially at rest in the rotating frame, the intrinsic spin therefore precesses in the opposite sense to the rotation of the frame.

Physical states in quantum mechanics are described by mass and spin, which characterize the irreducible unitary representations of the inhomogeneous Lorentz group.[3] The inertial properties of a particle are determined by its inertial mass as well as spin. Phenomena associated with the spin-rotation coupling reveal the inertial properties of intrinsic spin.

Free particles

A free particle with spin that moves uniformly in an inertial frame of reference carries with it an intrinsic spin vector that remains constant along the particle's straight trajectory. With respect to an observer that rotates with angular velocity , appears in general to precess with angular velocity . Associated with this precessional motion is the quantum mechanical spin-rotation Hamiltonian . An observer rotating with angular velocity in an inertial frame has a relative velocity given by , where is its spatial position. The observer measures the energy of an incident particle of energy and momentum . The measured energy is given in accordance with the hypothesis of locality by applying Lorentz transformations point by point along the observer's world line. The result is or , where is the orbital angular momentum of the particle. On the other hand, in the semi-classical approximation, should equal , where is the total angular momentum and the generator of rotation in the quantum theory. The difference in between the Lorentz calculation and the semiclassical one, , is consistent with once the Lorentz factor due to time dilation is incorporated into the definition of , i.e., , which is the angular velocity of the rotating observer in terms of its proper time. Intrinsic spin thus couples to rotation in much the same way as orbital angular momentum.[4][5][6][7][8]

Continuous media

In a material medium, the spin-rotation coupling transforms into the spin-vorticity coupling, since vorticity signifies the local rotation of the medium. The vorticity vector , , for results in ; hence, the Hamiltonian for the spin-vorticity coupling is given by . The effect is very small for mechanical rotation (e.g. <10,000 rpm) but atomic rotations using GHz surface acoustic waves creates a measurable effect, with potential for improved spintronics that do not require rare materials with large spin-orbit interaction properties. A current-vorticity effect based on nanoscale materials has also been measured with similar potential.[9]

Relation to relativistic quantum theory

The spin-rotation coupling is consistent with relativistic quantum theory.[10][11][12][13][14][15] For photons, the corresponding helicity-rotation coupling naturally leads to the rotational Doppler effect[16]; moreover, for neutrons, the spin-rotation coupling has been observed in neutron interferometry.[17] The existence of the Mashhoon effect goes beyond the pointwise application of the Lorentz transformation in relativistic physics and implies a nonlocal approach to the theory of relativity.

The spin-rotation coupling can be extended to the spin-gravity coupling via the gravitational Larmor theorem;[18][19][20][21] however, the measurement of effects due to the intrinsic spin-gravity coupling is beyond current capabilities.[22][23]

Applications

The applications of the spin-rotation coupling include the phenomenon of phase wrap-up in the Global Positioning System (GPS),[24] neutron physics,[25] semiconductor physics,[26] magnetic resonance,[27][28] and spintronics.[29]

References

  1. ^ Bakke, Knut; Furtado, Claudio (July 24, 2009). "Geometric phase for a neutral particle in rotating frames in a cosmic string spacetime". Physical Review D. 80 (2) 024033. Bibcode:2009PhRvD..80b4033B. doi:10.1103/PhysRevD.80.024033.
  2. ^ Mashhoon, Bahram (1988-12-05). "Neutron interferometry in a rotating frame of reference". Physical Review Letters. 61 (23): 2639–2642. Bibcode:1988PhRvL..61.2639M. doi:10.1103/PhysRevLett.61.2639. PMID 10039184.
  3. ^ Wigner, E. P. (1993), Wightman, Arthur S. (ed.), "On Unitary Representations of the Inhomogeneous Lorentz Group", The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers, Berlin, Heidelberg: Springer, pp. 334–389, doi:10.1007/978-3-662-02781-3_22, ISBN 978-3-662-02781-3
  4. ^ Mashhoon, Bahram (1989-07-31). "Electrodynamics in a rotating frame of reference". Physics Letters A. 139 (3): 103–108. Bibcode:1989PhLA..139..103M. doi:10.1016/0375-9601(89)90338-1. ISSN 0375-9601.
  5. ^ Mashhoon, B. (2006), Ehlers, Jürgen; Lämmerzahl, Claus (eds.), "Quantum Theory in Accelerated Frames of Reference", Special Relativity: Will it Survive the Next 101 Years?, Lecture Notes in Physics, vol. 702, Berlin, Heidelberg: Springer, pp. 112–132, arXiv:hep-th/0507157, doi:10.1007/3-540-34523-x_5, ISBN 978-3-540-34523-7
  6. ^ Mashhoon, Bahram; Obukhov, Yuri N. (2013-09-18). "Spin precession in inertial and gravitational fields". Physical Review D. 88 (6) 064037. arXiv:1307.5470. Bibcode:2013PhRvD..88f4037M. doi:10.1103/PhysRevD.88.064037.
  7. ^ Mashhoon, Bahram; Obukhov, Yuri N. (2024-11-08). "Spin-of-light gyroscope and the spin-rotation coupling". Physical Review D. 110 (10) 104015. arXiv:2408.07799. Bibcode:2024PhRvD.110j4015M. doi:10.1103/PhysRevD.110.104015.
  8. ^ Mashhoon, Bahram (2025-04-14), Inertia, arXiv:2502.07604
  9. ^ Nozaki, Yukio; Sukegawa, Hiroaki; Watanabe, Shinichi; Yunoki, Seiji; Horaguchi, Taisuke; Nakayama, Hayato; Yamanoi, Kazuto; Wen, Zhenchao; He, Cong; Song, Jieyuan; Ohkubo, Tadakatsu; Mitani, Seiji; Maezawa, Kazuki; Nishikawa, Daichi; Fujii, Shun (2025-12-31). "Gyro-spintronic material science using vorticity gradient in solids". Science and Technology of Advanced Materials. 26 (1) 2428153. doi:10.1080/14686996.2024.2428153. ISSN 1468-6996. PMC 11864018. PMID 40012583.
  10. ^ Hehl, Friedrich W.; Ni, Wei-Tou (1990-09-15). "Inertial effects of a Dirac particle". Physical Review D. 42 (6): 2045–2048. Bibcode:1990PhRvD..42.2045H. doi:10.1103/PhysRevD.42.2045. PMID 10013053.
  11. ^ Soares, Ivano Damião; Tiomno, Jayme (1996-08-15). "The physics of the Sagnac-Mashhoon effects". Physical Review D. 54 (4): 2808–2813. Bibcode:1996PhRvD..54.2808D. doi:10.1103/PhysRevD.54.2808. PMID 10020958.
  12. ^ Ryder, Lewis (1998-03-13). "Relativistic treatment of inertial spin effects". Journal of Physics A: Mathematical and General. 31 (10): 2465–2469. Bibcode:1998JPhA...31.2465R. doi:10.1088/0305-4470/31/10/019. ISSN 0305-4470.
  13. ^ Papini, G.; Lambiase, G. (2002-02-25). "Spin–rotation coupling in muon g−2 experiments". Physics Letters A. 294 (3): 175–178. arXiv:gr-qc/0106066. Bibcode:2002PhLA..294..175P. doi:10.1016/S0375-9601(02)00040-3. ISSN 0375-9601.
  14. ^ Papini, G. (2002-03-14). "Parity and time reversal in the spin-rotation interaction". Physical Review D. 65 (7) 077901. arXiv:gr-qc/0201098. Bibcode:2002PhRvD..65g7901P. doi:10.1103/PhysRevD.65.077901.
  15. ^ Lambiase, Gaetano; Papini, Giorgio (2021). The Interaction of Spin with Gravity in Particle Physics. Lecture Notes in Physics. Vol. 993. doi:10.1007/978-3-030-84771-5. ISBN 978-3-030-84770-8. ISSN 0075-8450.
  16. ^ Mashhoon, Bahram (2024-03-25), Rotational Doppler Effect and Spin-Rotation Coupling, arXiv:2403.17151
  17. ^ Danner, Armin; Demirel, Bülent; Kersten, Wenzel; Lemmel, Hartmut; Wagner, Richard; Sponar, Stephan; Hasegawa, Yuji (2020-02-14). "Spin-rotation coupling observed in neutron interferometry". npj Quantum Information. 6 (1): 23. arXiv:1904.07085. Bibcode:2020npjQI...6...23D. doi:10.1038/s41534-020-0254-8. ISSN 2056-6387.
  18. ^ Mashhoon, Bahram (1993-02-15). "On the gravitational analogue of Larmor's theorem". Physics Letters A. 173 (4): 347–354. Bibcode:1993PhLA..173..347M. doi:10.1016/0375-9601(93)90248-X. ISSN 0375-9601.
  19. ^ Mashhoon, Bahram (1995-02-13). "On the coupling of intrinsic spin with the rotation of the earth". Physics Letters A. 198 (1): 9–13. Bibcode:1995PhLA..198....9M. doi:10.1016/0375-9601(95)00010-Z. ISSN 0375-9601.
  20. ^ Mashhoon, Bahram (2000-06-08). "Gravitational couplings of intrinsic spin". Classical and Quantum Gravity. 17 (12): 2399–2409. arXiv:gr-qc/0003022. Bibcode:2000CQGra..17.2399M. doi:10.1088/0264-9381/17/12/312. ISSN 0264-9381.
  21. ^ Kiefer, C.; Weber, C. (2005). "On the interaction of mesoscopic quantum systems with gravity". Annalen der Physik. 517 (4): 253–278. arXiv:gr-qc/0408010. Bibcode:2005AnP...517..253K. doi:10.1002/andp.20055170404. ISSN 1521-3889.
  22. ^ Fadeev, Pavel; Wang, Tao; Band, Y. B.; Budker, Dmitry; Graham, Peter W.; Sushkov, Alexander O.; Kimball, Derek F. Jackson (2021-02-25). "Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope". Physical Review D. 103 (4) 044056. arXiv:2006.09334. Bibcode:2021PhRvD.103d4056F. doi:10.1103/PhysRevD.103.044056.
  23. ^ Gao, Dongfeng; Zhou, Lin; Wang, Jin; Zhan, Mingsheng (2024-10-28). "Constraining the spin-gravity coupling effects to the ${10}^{\ensuremath{-}10}$ level with dual-species atom interferometers". Physical Review A. 110 (4) 043322. doi:10.1103/PhysRevA.110.043322.
  24. ^ Ashby, Neil (2003-01-28). "Relativity in the Global Positioning System". Living Reviews in Relativity. 6 (1) 1. Bibcode:2003LRR.....6....1A. doi:10.12942/lrr-2003-1. ISSN 1433-8351. PMC 5253894. PMID 28163638.
  25. ^ Rauch, Helmut; Werner, Samuel A. (2015-01-15). Neutron Interferometry 2nd Edn: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement. Oxford University Press. doi:10.1093/acprof:oso/9780198712510.001.0001. ISBN 978-0-19-871251-0.
  26. ^ Chowdhury, Debashree; Basu, B. (2013-12-01). "Effect of spin rotation coupling on spin transport". Annals of Physics. 339: 358–370. arXiv:1309.1376. Bibcode:2013AnPhy.339..358C. doi:10.1016/j.aop.2013.09.011. ISSN 0003-4916.
  27. ^ Tejada, J.; Zysler, R. D.; Molins, E.; Chudnovsky, E. M. (2010-01-15). "Evidence for Quantization of Mechanical Rotation of Magnetic Nanoparticles". Physical Review Letters. 104 (2) 027202. Bibcode:2010PhRvL.104b7202T. doi:10.1103/PhysRevLett.104.027202. PMID 20366623.
  28. ^ Lendínez, S.; Chudnovsky, E. M.; Tejada, J. (2010-11-12). "Rotational Doppler effect in magnetic resonance". Physical Review B. 82 (17) 174418. arXiv:1008.2142. Bibcode:2010PhRvB..82q4418L. doi:10.1103/PhysRevB.82.174418.
  29. ^ Kobayashi, D.; Yoshikawa, T.; Matsuo, M.; Iguchi, R.; Maekawa, S.; Saitoh, E.; Nozaki, Y. (2017-08-16). "Spin Current Generation Using a Surface Acoustic Wave Generated via Spin-Rotation Coupling". Physical Review Letters. 119 (7) 077202. Bibcode:2017PhRvL.119g7202K. doi:10.1103/PhysRevLett.119.077202. PMID 28949686.
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya