Formerly residing in Le Castera in Lasseube, Berger was instrumental in Mikhail Gromov's accepting positions both at the University of Paris and at the IHÉS.[3]
Berger, Marcel: Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes. (French) Bull. Soc. Math. France 83 (1955), 279–330.
Berger, Marcel: Les espaces symétriques noncompacts. (French) Ann. Sci. École Norm. Sup. (3) 74 1957 85–177.
Berger, M.: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. (French) Ann. Scuola Norm. Sup. Pisa (3) 15 1961 179–246.
Berger, Marcel; Gauduchon, Paul; Mazet, Edmond: Le spectre d'une variété riemannienne. (French) Lecture Notes in Mathematics, Vol. 194 Springer-Verlag, Berlin-New York 1971.
Besse, A. L. (1978). Manifolds all of whose Geodesics are Closed. Berlin Heidelberg: Springer-Verlag. ISBN978-3-540-08158-6.
Berger, Marcel; Gostiaux, Bernard (1988). Differential Geometry: manifolds, curves, and surfaces. Graduate Texts in Mathematics. Translated by Levy, Silvio. New York: Springer. ISBN978-0-387-96626-7.
Berger, Marcel: Systoles et applications selon Gromov. (French) [Systoles and their applications according to Gromov] Séminaire Bourbaki, Vol. 1992/93. Astérisque No. 216 (1993), Exp. No. 771, 5, 279–310.