In mathematics , the Lévy–Prokhorov metric (sometimes known just as the Prokhorov metric ) is a metric (i.e., a definition of distance) on the collection of probability measures on a given metric space . It is named after the French mathematician Paul Lévy and the Soviet mathematician Yuri Vasilyevich Prokhorov ; Prokhorov introduced it in 1956 as a generalization of the earlier Lévy metric .
Definition
Let
(
M
,
d
)
{\displaystyle (M,d)}
be a metric space with its Borel sigma algebra
B
(
M
)
{\displaystyle {\mathcal {B}}(M)}
. Let
P
(
M
)
{\displaystyle {\mathcal {P}}(M)}
denote the collection of all probability measures on the measurable space
(
M
,
B
(
M
)
)
{\displaystyle (M,{\mathcal {B}}(M))}
.
For a subset
A
⊆
M
{\displaystyle A\subseteq M}
, define the ε-neighborhood of
A
{\displaystyle A}
by
A
ε
:=
{
p
∈
M
|
∃
q
∈
A
,
d
(
p
,
q
)
<
ε
}
=
⋃
p
∈
A
B
ε
(
p
)
.
{\displaystyle A^{\varepsilon }:=\{p\in M~|~\exists q\in A,\ d(p,q)<\varepsilon \}=\bigcup _{p\in A}B_{\varepsilon }(p).}
where
B
ε
(
p
)
{\displaystyle B_{\varepsilon }(p)}
is the open ball of radius
ε
{\displaystyle \varepsilon }
centered at
p
{\displaystyle p}
.
The Lévy–Prokhorov metric
π
:
P
(
M
)
2
→
[
0
,
+
∞
)
{\displaystyle \pi :{\mathcal {P}}(M)^{2}\to [0,+\infty )}
is defined by setting the distance between two probability measures
μ
{\displaystyle \mu }
and
ν
{\displaystyle \nu }
to be
π
(
μ
,
ν
)
:=
inf
{
ε
>
0
|
μ
(
A
)
≤
ν
(
A
ε
)
+
ε
and
ν
(
A
)
≤
μ
(
A
ε
)
+
ε
for all
A
∈
B
(
M
)
}
.
{\displaystyle \pi (\mu ,\nu ):=\inf \left\{\varepsilon >0~|~\mu (A)\leq \nu (A^{\varepsilon })+\varepsilon \ {\text{and}}\ \nu (A)\leq \mu (A^{\varepsilon })+\varepsilon \ {\text{for all}}\ A\in {\mathcal {B}}(M)\right\}.}
For probability measures clearly
π
(
μ
,
ν
)
≤
1
{\displaystyle \pi (\mu ,\nu )\leq 1}
.
Some authors omit one of the two inequalities or choose only open or closed
A
{\displaystyle A}
; either inequality implies the other, and
(
A
¯
)
ε
=
A
ε
{\displaystyle ({\bar {A}})^{\varepsilon }=A^{\varepsilon }}
, but restricting to open sets may change the metric so defined (if
M
{\displaystyle M}
is not Polish ).
Properties
If
(
M
,
d
)
{\displaystyle (M,d)}
is separable , convergence of measures in the Lévy–Prokhorov metric is equivalent to weak convergence of measures . Thus,
π
{\displaystyle \pi }
is a metrization of the topology of weak convergence on
P
(
M
)
{\displaystyle {\mathcal {P}}(M)}
.
The metric space
(
P
(
M
)
,
π
)
{\displaystyle \left({\mathcal {P}}(M),\pi \right)}
is separable if and only if
(
M
,
d
)
{\displaystyle (M,d)}
is separable.
If
(
P
(
M
)
,
π
)
{\displaystyle \left({\mathcal {P}}(M),\pi \right)}
is complete then
(
M
,
d
)
{\displaystyle (M,d)}
is complete. If all the measures in
P
(
M
)
{\displaystyle {\mathcal {P}}(M)}
have separable support , then the converse implication also holds: if
(
M
,
d
)
{\displaystyle (M,d)}
is complete then
(
P
(
M
)
,
π
)
{\displaystyle \left({\mathcal {P}}(M),\pi \right)}
is complete. In particular, this is the case if
(
M
,
d
)
{\displaystyle (M,d)}
is separable.
If
(
M
,
d
)
{\displaystyle (M,d)}
is separable and complete, a subset
K
⊆
P
(
M
)
{\displaystyle {\mathcal {K}}\subseteq {\mathcal {P}}(M)}
is relatively compact if and only if its
π
{\displaystyle \pi }
-closure is
π
{\displaystyle \pi }
-compact.
If
(
M
,
d
)
{\displaystyle (M,d)}
is separable , then
π
(
μ
,
ν
)
=
inf
{
α
(
X
,
Y
)
:
Law
(
X
)
=
μ
,
Law
(
Y
)
=
ν
}
{\displaystyle \pi (\mu ,\nu )=\inf\{\alpha (X,Y):{\text{Law}}(X)=\mu ,{\text{Law}}(Y)=\nu \}}
, where
α
(
X
,
Y
)
=
inf
{
ε
>
0
:
P
(
d
(
X
,
Y
)
>
ε
)
≤
ε
}
{\displaystyle \alpha (X,Y)=\inf\{\varepsilon >0:\mathbb {P} (d(X,Y)>\varepsilon )\leq \varepsilon \}}
is the Ky Fan metric .[ 1] [ 2]
Relation to other distances
Let
(
M
,
d
)
{\displaystyle (M,d)}
be separable. Then
π
(
μ
,
ν
)
≤
δ
(
μ
,
ν
)
{\displaystyle \pi (\mu ,\nu )\leq \delta (\mu ,\nu )}
, where
δ
(
μ
,
ν
)
{\displaystyle \delta (\mu ,\nu )}
is the total variation distance of probability measures [ 3]
π
(
μ
,
ν
)
2
≤
W
p
(
μ
,
ν
)
p
{\displaystyle \pi (\mu ,\nu )^{2}\leq W_{p}(\mu ,\nu )^{p}}
, where
W
p
{\displaystyle W_{p}}
is the Wasserstein metric with
p
≥
1
{\displaystyle p\geq 1}
and
μ
,
ν
{\displaystyle \mu ,\nu }
have finite
p
{\displaystyle p}
th moment.[ 4]
See also
Notes
^ Dudley 1989 , p. 322
^ Račev 1991 , p. 159
^ Gibbs, Alison L. ; Su, Francis Edward: On Choosing and Bounding Probability Metrics , International Statistical Review / Revue Internationale de Statistique, Vol 70 (3), pp. 419-435, Lecture Notes in Math., 2002.
^ Račev 1991 , p. 175
References
Billingsley, Patrick (1999). Convergence of Probability Measures . John Wiley & Sons, Inc., New York. ISBN 0-471-19745-9 . OCLC 41238534 .
Zolotarev, V.M. (2001) [1994], "Lévy–Prokhorov metric" , Encyclopedia of Mathematics , EMS Press
Dudley, R.M. (1989). Real analysis and probability . Pacific Grove, Calif. : Wadsworth & Brooks/Cole. ISBN 0-534-10050-3 .
Račev, Svetlozar T. (1991). Probability metrics and the stability of stochastic models . Chichester [u.a.] : Wiley. ISBN 0-471-92877-1 .
Basic concepts Main results Maps Types of metric spaces Sets Examples
Related Generalizations