Locally normal space
In mathematics, particularly topology, a topological space X is locally normal if intuitively it looks locally like a normal space.[1] More precisely, a locally normal space satisfies the property that each point of the space belongs to a neighbourhood of the space that is normal under the subspace topology. Formal definitionA topological space X is said to be locally normal if and only if each point, x, of X has a neighbourhood that is normal under the subspace topology.[2] Note that not every neighbourhood of x has to be normal, but at least one neighbourhood of x has to be normal (under the subspace topology). Note however, that if a space were called locally normal if and only if each point of the space belonged to a subset of the space that was normal under the subspace topology, then every topological space would be locally normal. This is because, the singleton {x} is vacuously normal and contains x. Therefore, the definition is more restrictive. Examples and properties
See also
Further readingČech, Eduard (1937). "On Bicompact Spaces". Annals of Mathematics. 38 (4): 823–844. doi:10.2307/1968839. ISSN 0003-486X. JSTOR 1968839. References
|