This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the light-year (distance traveled by light in one Julian year; approximately 9.46 trillion kilometres).
This list refers only to coupling of matter with defined limits, and not the coupling of matter in general (such as, for example, the cosmic microwave background, which fills the entire universe). All structures in this list are defined as to whether their presiding limits have been identified.
There are some reasons to be cautious about this list:
The Zone of Avoidance, or the part of the sky occupied by the Milky Way, blocks out light from several structures, making their limits imprecisely identified.
Some structures are too distant to be seen even with the most powerful telescopes.
Some structures have no defined limits, or endpoints. All structures are believed to be part of the cosmic web, which is a conclusive idea.[clarification needed] Most structures are overlapped by nearby galaxies, creating a problem of how to carefully define the structure's limit.
The largest contiguous feature in the local volume and comparable to the Sloan Great Wall (see above) at half the distance. It is located at the celestial South Pole.
Structures larger than this size are incompatible with the cosmological principle according to all estimates. However, whether the existence of these structures itself constitutes a refutation of the cosmological principle is still unclear.[20]
Contains the Milky Way, and is the first galaxy filament to be discovered. (The first LQG was found earlier in 1982.) A new report in 2014 confirms the Milky Way as a member of the Laniakea Supercluster.
A part of the Laniakea Supercluster (see above). It also contains the Milky Way Galaxy, which contains the Solar System where Earth orbits the Sun. Listed here for reference.
Voids are immense spaces between galaxy filaments and other large-scale structures. Technically they are not structures. They are vast spaces which contain very few or no galaxies. They are theorized to be caused by quantum fluctuations during the early formation of the universe.
A list of the largest voids so far discovered is below. Each is ranked according to its longest dimension.
A recent analysis of the Wilkinson Microwave Anisotropy Probe (WMAP) in 2007 has found an irregularity of the temperature fluctuation of the cosmic microwave background within the vicinity of the constellation Eridanus with analysis found to be 70 microkelvins cooler than the average CMB temperature. One speculation is that a void could cause the cold spot, with the possible size on the left. However, it may be as large as 1 billion light-years, close to the size of the Giant Void.
^Horvath, I.; Hakkila, J.; Bagoly, Z. (2013). "The largest possible structure of the Universe, defined by Einstein in his Big Bang theory (1901)". 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: Paper 33 in EConf Proceedings C1304143. 1311: 1104. arXiv:1311.1104. Bibcode:2013arXiv1311.1104H.
^ abcdefghijklR. G. Clowes. "Large Quasar Groups – A Short Review". 'The New Era of Wide Field Astronomy', ASP Conference Series, Vol. 232. 2001; Astronomical Society of the Pacific; ISBN1-58381-065-X; Bibcode:2001ASPC..232..108C.
^S. A. Pustilnik (SAO), D. Engels (Hamburg), A. Y. Kniazev (ESO, SAO), A. G. Pramskij, A. V. Ugryumov (SAO), H.-J. Hagen (Hamburg) (2005). ["HS 2134+0400 – new very metal-poor galaxy, a representative of void population?"]. arXiv:astro-ph/0508255v1. Bibcode:2006AstL...32..228Pdoi:10.1134/S1063773706040025.