Function
|
Time domain
|
Laplace s-domain
|
Region of convergence
|
Reference
|
unit impulse
|
|
|
all s
|
inspection
|
delayed impulse
|
|
|
Re(s) > 0
|
time shift of unit impulse[2]
|
unit step
|
|
|
Re(s) > 0
|
integrate unit impulse
|
delayed unit step
|
|
|
Re(s) > 0
|
time shift of unit step[3]
|
ramp
|
|
|
Re(s) > 0
|
integrate unit impulse twice
|
nth power (for integer n)
|
|
|
Re(s) > 0 (n > −1)
|
Integrate unit step n times
|
qth power (for complex q)
|
|
|
Re(s) > 0 Re(q) > −1
|
[4][5]
|
nth root
|
|
|
Re(s) > 0
|
Set q = 1/n above.
|
nth power with frequency shift
|
|
|
Re(s) > −α
|
Integrate unit step, apply frequency shift
|
delayed nth power with frequency shift
|
|
|
Re(s) > −α
|
Integrate unit step, apply frequency shift, apply time shift
|
exponential decay
|
|
|
Re(s) > −α
|
Frequency shift of unit step
|
two-sided exponential decay (only for bilateral transform)
|
|
|
−α < Re(s) < α
|
Frequency shift of unit step
|
exponential approach
|
|
|
Re(s) > 0
|
Unit step minus exponential decay
|
sine
|
|
|
Re(s) > 0
|
[6]
|
cosine
|
|
|
Re(s) > 0
|
[6]
|
hyperbolic sine
|
|
|
Re(s) > |α|
|
[7]
|
hyperbolic cosine
|
|
|
Re(s) > |α|
|
[7]
|
exponentially decaying sine wave
|
|
|
Re(s) > −α
|
[6]
|
exponentially decaying cosine wave
|
|
|
Re(s) > −α
|
[6]
|
natural logarithm
|
|
|
Re(s) > 0
|
[7]
|
Bessel function of the first kind, of order n
|
|
|
Re(s) > 0 (n > −1)
|
[7]
|
Error function
|
|
|
Re(s) > 0
|
[7]
|