A polyhedron with many holes
Rhombicuboctahedron , one of the Leonardo da Vinci 's geometrical shapes illustration in 1509 Divina proportione .
Leonardo polyhedron is a polyhedron with a Platonic solid 's rotational symmetry
and has genus
g
≥
2
{\displaystyle g\geq 2}
. Here, a polyhedron is the unbounded 2-manifold embedded in three-dimensional Euclidean space . The polyhedron is named after Leonardo da Vinci , who illustrated geometrical shapes in Luca Pacioli 's De divina proportione in three phases: drawing Platonic solids and Archimedean solids; replacing the edges of those solids by struts, forming a convex polygon , and this results in the first polyhedron with many genera; and placing each hole with the skeleton of a pyramid .
Alicia Boole Stott discovered the first regular Leonardo polyhedron (its property has transitivity by the set consisting of vertex, edge, and face of a polyhedron ). Similar to Leonardo's work, she began the construction with a four-dimensional polytope , projecting to a Schlegel diagram , and replacing its edges with quadrilateral-shaped struts. Coxeter later discovered the regular skew polyhedron . Felix Klein discovered the three genera. Together with Robert Fricke , they found the five genera of Leonardo polyhedra. Some colleagues further discovered the locally regular and the genus up to 14.
References
Bokowski, Jürgen (2022). "Regular Leonardo polyhedra" . The Art of Discrete and Applied Mathematics . 5 (3). doi :10.26493/2590-9770.1535.8ad .
Bokowski, Jürgen; H., Kevin (2025). "Polyhedral Embeddings of Triangular Regular Maps of Genus
g
{\displaystyle g}
,
2
≤
g
≤
14
{\displaystyle 2\leq g\leq 14}
, and Neighborly Spatial Polyhedra" . Symmetry . 17 (4). doi :10.3390/sym17040622 .
Gévay, Gábor; Wills, Jörg M. (2013). "On regular and equivelar Leonardo polyhedra" . Ars Mathematica Contemporanea . 6 (1): 1– 11. doi :10.26493/1855-3974.219.440 .
Coxeter, H. S. M. (1937). "Regular skew polyhedra in three and four dimensions and their topological analogues". Proceedings of the London Mathematical Society . s2-43 (1): 33– 62. doi :10.1112/plms/s2-43.1.33 .
Klein, Felix (1879). "Über die transformationen siebenter ordnung der elliptischen functionen". Mathematische Annalen . 14 (428– 471).
Klein, Felix (1884). Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften . Teubner .
Klein, Felix ; Fricke, Robert (1890). Vorlesungen über die Theorie der elliptischen Modulfunktionen . Teubner .
Stott, Alicia Boole (1910). "Geometrical deduction of semiregular from regular polytopes and space fillings" . Amst. Ak. Versl . 19 : 3– 8.
Further reading