Share to: share facebook share twitter share wa share telegram print page

Lattice gauge theory

In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice.

Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory is recovered.[1]

Basics

In lattice gauge theory, the spacetime is Wick rotated into Euclidean space and discretized into a lattice with sites separated by distance and connected by links. In the most commonly considered cases, such as lattice QCD, fermion fields are defined at lattice sites (which leads to fermion doubling), while the gauge fields are defined on the links. That is, an element U of the compact Lie group G (not algebra) is assigned to each link. Hence, to simulate QCD with Lie group SU(3), a 3×3 unitary matrix is defined on each link. The link is assigned an orientation, with the inverse element corresponding to the same link with the opposite orientation. And each node is given a value in (a color 3-vector, the space on which the fundamental representation of SU(3) acts), a bispinor (Dirac 4-spinor), an nf vector, and a Grassmann variable.[citation needed]

Thus, the composition of links' SU(3) elements along a path (i.e. the ordered multiplication of their matrices) approximates a path-ordered exponential (geometric integral), from which Wilson loop values can be calculated for closed paths.[citation needed]

Yang–Mills action

The Yang–Mills action is written on the lattice using Wilson loops (named after Kenneth G. Wilson), so that the limit formally reproduces the original continuum action.[1] Given a faithful irreducible representation ρ of G, the lattice Yang–Mills action, known as the Wilson action, is the sum over all lattice sites of the (real component of the) trace over the n links e1, ..., en in the Wilson loop,

Here, χ is the character. If ρ is a real (or pseudoreal) representation, taking the real component is redundant, because even if the orientation of a Wilson loop is flipped, its contribution to the action remains unchanged.[non-primary source needed]

There are many possible Wilson actions, depending on which Wilson loops are used in the action. The simplest Wilson action uses only the 1×1 Wilson loop, and differs from the continuum action by "lattice artifacts" proportional to the small lattice spacing . By using more complicated Wilson loops to construct "improved actions", lattice artifacts can be reduced to be proportional to , making computations more accurate.[citation needed]

Measurements and calculations

This result of a Lattice QCD computation shows a meson, composed out of a quark and an antiquark. (After M. Cardoso et al.[2])

Quantities such as particle masses are stochastically calculated using techniques such as the Monte Carlo method. Gauge field configurations are generated with probabilities proportional to , where is the lattice action and is related to the lattice spacing . The quantity of interest is calculated for each configuration, and averaged. Calculations are often repeated at different lattice spacings so that the result can be extrapolated to the continuum, .

Such calculations are often extremely computationally intensive, and can require the use of the largest available supercomputers. To reduce the computational burden, the so-called quenched approximation can be used, in which the fermionic fields are treated as non-dynamic "frozen" variables. While this was common in early lattice QCD calculations, "dynamical" fermions are now standard.[3] Simulating lattice gauge theories is one hypothetical application of quantum computers.[4]

The results of lattice QCD computations show that in a meson not only the particles (quarks and antiquarks), but also the "fluxtubes" of the gluon fields are important.[citation needed]

Quantum triviality

Lattice gauge theory is also important for the study of quantum triviality by the real-space renormalization group.[5] The most important information in the RG flow are the fixed points. The possible macroscopic states of the system, at a large scale, are given by this set of fixed points. If these fixed points correspond to a free field theory, the theory is said to be trivial or noninteracting.[6][7]

The concept of triviality has been applied to the physics of the Higgs boson.[8] A comparatively simple toy model of the "Higgs sector" of the Standard Model is provided by φ4 theory, i.e., a scalar field theory whose Lagrangian includes an interaction term that is quartic in the field φ. It is conjectured, based on evidence including lattice gauge calculations, that this theory is "trivial": if the regularization cutoff is taken to zero distance or infinite energy, the theory will describe only free particles. Using this as a model for the Higgs boson, the conjectured triviality implies that the cutoff cannot be removed. Because there is an upper bound on how high the cutoff energy can be, there is an upper bound on the interaction strength, which ultimately implies an upper bound on the mass of the Higgs boson.[9]

Other applications

Originally, solvable two-dimensional lattice gauge theories had already been introduced in 1971 as models with interesting statistical properties by the theorist Franz Wegner, who worked in the field of phase transitions.[10]

When only 1×1 Wilson loops appear in the action, lattice gauge theory can be shown to be exactly dual to spin foam models.[11]

See also

References

  1. ^ a b Wilson, K. (1974). "Confinement of quarks". Physical Review D. 10 (8): 2445. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
  2. ^ Cardoso, M.; Cardoso, N.; Bicudo, P. (2010-02-03). "Lattice QCD computation of the color fields for the static hybrid quark-gluon-antiquark system, and microscopic study of the Casimir scaling". Physical Review D. 81 (3): 034504. arXiv:0912.3181. Bibcode:2010PhRvD..81c4504C. doi:10.1103/physrevd.81.034504. ISSN 1550-7998. S2CID 119216789.{{cite journal}}: CS1 maint: article number as page number (link)
  3. ^ A. Bazavov; et al. (2010). "Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks". Reviews of Modern Physics. 82 (2): 1349–1417. arXiv:0903.3598. Bibcode:2010RvMP...82.1349B. doi:10.1103/RevModPhys.82.1349. S2CID 119259340.
  4. ^ Meth, Michael; Zhang, Jinglei; Haase, Jan F.; Edmunds, Claire; Postler, Lukas; Jena, Andrew J.; Steiner, Alex; Dellantonio, Luca; Blatt, Rainer; Zoller, Peter; Monz, Thomas; Schindler, Philipp; Muschik, Christine; Ringbauer, Martin (2025-03-25). "Simulating two-dimensional lattice gauge theories on a qudit quantum computer". Nature Physics: 1–7. doi:10.1038/s41567-025-02797-w. ISSN 1745-2481. PMC 11999872.
  5. ^ Wilson, Kenneth G. (1975-10-01). "The renormalization group: Critical phenomena and the Kondo problem". Reviews of Modern Physics. 47 (4). American Physical Society (APS): 773–840. Bibcode:1975RvMP...47..773W. doi:10.1103/revmodphys.47.773. ISSN 0034-6861.
  6. ^ Zinn-Justin, Jean (2007). Phase Transitions and Renormalization Group. Oxford University Press. p. 323. ISBN 978-0-19-922719-8.
  7. ^ Huang, Kerson (2010) [1998]. Quantum Field Theory: From Operators to Path Integrals. Wiley. pp. 255–256. ISBN 978-3-527-40846-7.
  8. ^ D. J. E. Callaway (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". Physics Reports. 167 (5): 241–320. Bibcode:1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7.
  9. ^ Siefert, Johannes; Wolff, Ulli (2014). "Triviality of φ44 theory in a finite volume scheme adapted to the broken phase" (PDF). Physics Letters B. 733: 11–14. doi:10.1016/j.physletb.2014.04.013.
  10. ^ F. Wegner, "Duality in Generalized Ising Models and Phase Transitions without Local Order Parameter", J. Math. Phys. 12 (1971) 2259-2272. Reprinted in Claudio Rebbi (ed.), Lattice Gauge Theories and Monte-Carlo-Simulations, World Scientific, Singapore (1983), p. 60-73. Abstract
  11. ^ R. Oeckl; H. Pfeiffer (2001). "The dual of pure non-Abelian lattice gauge theory as a spin foam model". Nuclear Physics B. 598 (1–2): 400–426. arXiv:hep-th/0008095. Bibcode:2001NuPhB.598..400O. doi:10.1016/S0550-3213(00)00770-7. S2CID 3606117.

Further reading

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya