In mathematics, Joyal's theorem is a theorem in homotopy theory that provides necessary and sufficient conditions for the solvability of a certain lifting problem involving simplicial sets . In particular, in higher category theory , it proves the statement "an ∞-groupoid is a Kan complex ", which is a version of the homotopy hypothesis .[ 1]
The theorem was introduced by André Joyal .
Joyal extension theorem
Let
C
{\displaystyle C}
be quasicategory and let
u
:
X
→
Y
{\displaystyle u:X\rightarrow Y}
be a morphism of
C
{\displaystyle C}
. The following conditions are equivalent:[ 2] [ 3] [ 4] [ 5]
(1) The morphism
u
{\displaystyle u}
is an isomorphism .
(2) Let
n
≥
2
{\displaystyle n\geq 2}
and let
σ
0
:
Λ
0
n
→
C
{\displaystyle \sigma _{0}:\Lambda _{0}^{n}\to C}
be a morphism of simplicial sets for which the initial edge
Δ
1
≅
N
∙
(
{
0
<
1
}
)
→
Λ
0
n
→
σ
0
C
{\displaystyle \Delta ^{1}\cong N_{\bullet }(\{0<1\})\rightarrow \Lambda _{0}^{n}\xrightarrow {\sigma _{0}} C}
is equal to
u
{\displaystyle u}
. Then
σ
0
{\displaystyle \sigma _{0}}
can be extended to an n -simplex
σ
:
Δ
n
→
C
{\displaystyle \sigma :\Delta ^{n}\to C}
.
(3) Let
n
≥
2
{\displaystyle n\geq 2}
and let
σ
0
:
Λ
n
n
→
C
{\displaystyle \sigma _{0}:\Lambda _{n}^{n}\rightarrow C}
be a morphism of simplicial sets for which the initial edge
Δ
1
≅
N
∙
(
{
n
−
1
<
n
}
)
→
Λ
n
n
→
σ
0
C
{\displaystyle \Delta ^{1}\cong N_{\bullet }(\{n-1<n\})\rightarrow \Lambda _{n}^{n}\xrightarrow {\sigma _{0}} C}
is equal to
u
{\displaystyle u}
. Then
σ
0
{\displaystyle \sigma _{0}}
can be extended to an n -simplex
σ
:
Δ
n
→
C
{\displaystyle \sigma :\Delta ^{n}\to C}
.
Joyal lifting theorem
Let
p
:
C
→
D
{\displaystyle p:C\rightarrow D}
be an inner fibration (Joyal used mid-fibration[ 6] ) between quasicategories, and let
f
∈
C
1
{\displaystyle f\in C_{1}}
be an edge such that
p
(
f
)
{\displaystyle p(f)}
is an isomorphism in
D
{\displaystyle D}
. The following are equivalent:[ 7] [ 8] [ 9] [ 10] [ 11] [ 12]
(1) The edge
f
{\displaystyle f}
is an isomorphism in
C
{\displaystyle C}
.
(2) For all
n
≥
2
{\displaystyle n\geq 2}
, every diagram of the form
admits a lift .
(3) For all
n
≥
2
{\displaystyle n\geq 2}
, every diagram of the form
admits a lift.
Notes
^ Cisinski 2023 , Theorem 3.5.1.
^ Theorem 4.4.2.6 in Kerodon
^ Rezk 2022 , 34.2. Theorem
^ Lurie 2009 , Proposition 1.2.4.3
^ Joyal 2002 , Theorem 1.3
^ Lurie 2009 , p. xiv
^ Rezk 2022 , 34.17. Theorem (Joyal lifting).
^ Haugseng , Theorem 5.3.1.
^ Kapulkin & Voevodsky 2020 , Theorem 2.10
^ Land 2021 , Theorem. 2.1.8
^ Joyal 2002 , Theorem 2.2
^ Joyal 2008 , Theorem 6.13
References
Joyal, A. (2002). "Quasi-categories and Kan complexes". Journal of Pure and Applied Algebra . 175 (1– 3): 207– 222. doi :10.1016/S0022-4049(02)00135-4 .
Rezk, Charles (2022). "Introduction to quasicategories" (PDF) – via ncatlab.org.
Land, Markus (2021). "Joyal's Theorem, Applications, and Dwyer–Kan Localizations" . Introduction to Infinity-Categories . Compact Textbooks in Mathematics. pp. 97– 161. doi :10.1007/978-3-030-61524-6_2 . ISBN 978-3-030-61523-9 . Zbl 1471.18001 .
Kapulkin, Krzysztof; Voevodsky, Vladimir (2020). "A cubical approach to straightening". Journal of Topology . 13 (4): 1682– 1700. doi :10.1112/topo.12173 .
"Theorem 4.4.2.6 (Joyal)" . Kerodon .
"Proposition 4.4.2.13" . Kerodon .
Haugseng, Rune. "Introduction to ∞-Categories" (PDF) .
Cisinski, Denis-Charles (2023). Higher Categories and Homotopical Algebra (PDF) . Cambridge University Press . ISBN 978-1108473200 .
Lurie, Jacob (2009). Higher Topos Theory . Princeton University Press. arXiv :math/0608040 . ISBN 978-0-691-14048-3 .
Joyal, André (2008). "THE THEORY OF QUASI-CATEGORIES (Vol I) Draft version" (PDF) .
Further reading