In the field of mathematics known as convex analysis , the indicator function of a set is a convex function that indicates the membership (or non-membership) of a given element in that set. It is similar to the indicator function used in probability, but assigns
+
∞
{\displaystyle +\infty }
instead of
1
{\displaystyle 1}
to the outside elements.
Each field seems to have its own meaning of an "indicator function", as in complex analysis for instance.
Definition
Let
X
{\displaystyle X}
be a set , and let
A
{\displaystyle A}
be a subset of
X
{\displaystyle X}
. The indicator function of
A
{\displaystyle A}
is the function [ 1]
[ 2]
[ 3]
[ 4]
ι
A
:
X
→
R
∪
{
+
∞
}
{\displaystyle \iota _{A}:X\to \mathbb {R} \cup \{+\infty \}}
taking values in the extended real number line defined by
ι
A
(
x
)
:=
{
0
,
x
∈
A
;
+
∞
,
x
∉
A
.
{\displaystyle \iota _{A}(x):={\begin{cases}0,&x\in A;\\+\infty ,&x\not \in A.\end{cases}}}
Properties
This function is convex if and only if the set
A
{\displaystyle A}
is convex.[ 5]
This function is lower-semicontinuous if and only if the set
A
{\displaystyle A}
is closed.[ 4]
For any arbitrary sets
A
{\displaystyle A}
and
B
{\displaystyle B}
, it is that
ι
A
+
ι
B
=
ι
A
∩
B
{\displaystyle \iota _{A}+\iota _{B}=\iota _{A\cap B}}
.
For an arbitrary non-empty set its Legendre transform is the support function .[ 6]
The subgradient of
ι
A
(
x
)
{\displaystyle \iota _{A}(x)}
for a set
A
{\displaystyle A}
and
x
∈
A
{\displaystyle x\in A}
is the normal cone of that set at
x
{\displaystyle x}
.[ 7]
Its infimal convolution with the Euclidean norm
|
|
⋅
|
|
2
{\displaystyle ||\cdot ||_{2}}
is the Euclidean distance to that set.[ 8]
References
^ R. T. Rockafellar, Convex Analysis , Princeton University Press, (1997) [1970], p.28.
^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization I , Springer-Verlag, 1993, p.152.
^ S. Boyd, L. Vandenberghe, Convex Optimization , Cambridge University Press, (2009) [2004], p.68.
^ a b H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces , Springer (2017) [2011], p.12.
^ H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces , Springer (2017) [2011], p.139.
^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization II , Springer-Verlag, 1993, p.39.
^ H. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces , Springer (2017) [2011], p.267.
^ J. B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Optimization II , Springer-Verlag, 1993, p.65.
Bibliography
Rockafellar, R. T. (1997) [1970]. Convex Analysis . Princeton, NJ: Princeton University Press. ISBN 978-0-691-01586-6 .
Hiriart-Urruty, J. B.; Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms I & II . Springer-Verlag.
Boyd, S. P.; Vandenberghe, L. (2004). Convex Optimization . Cambridge University Press.
Bauschke, H. H.; Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces . Springer.