Polynomial sequence
In mathematics , Gegenbauer polynomials or ultraspherical polynomials C (α) n (x ) are orthogonal polynomials on the interval [−1,1] with respect to the weight function (1 − x 2 )α –1/2 . They generalize Legendre polynomials and Chebyshev polynomials , and are special cases of Jacobi polynomials . They are named after Leopold Gegenbauer .
Characterizations
Plot of the Gegenbauer polynomial C n^(m)(x) with n=10 and m=1 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D
Gegenbauer polynomials with α =1
Gegenbauer polynomials with α =2
Gegenbauer polynomials with α =3
An animation showing the polynomials on the xα -plane for the first 4 values of n .
A variety of characterizations of the Gegenbauer polynomials are available.
1
(
1
−
2
x
t
+
t
2
)
α
=
∑
n
=
0
∞
C
n
(
α
)
(
x
)
t
n
(
0
≤
|
x
|
<
1
,
|
t
|
≤
1
,
α
>
0
)
{\displaystyle {\frac {1}{(1-2xt+t^{2})^{\alpha }}}=\sum _{n=0}^{\infty }C_{n}^{(\alpha )}(x)t^{n}\qquad (0\leq |x|<1,|t|\leq 1,\alpha >0)}
C
0
(
α
)
(
x
)
=
1
C
1
(
α
)
(
x
)
=
2
α
x
(
n
+
1
)
C
n
+
1
(
α
)
(
x
)
=
2
(
n
+
α
)
x
C
n
(
α
)
(
x
)
−
(
n
+
2
α
−
1
)
C
n
−
1
(
α
)
(
x
)
.
{\displaystyle {\begin{aligned}C_{0}^{(\alpha )}(x)&=1\\C_{1}^{(\alpha )}(x)&=2\alpha x\\(n+1)C_{n+1}^{(\alpha )}(x)&=2(n+\alpha )xC_{n}^{(\alpha )}(x)-(n+2\alpha -1)C_{n-1}^{(\alpha )}(x).\end{aligned}}}
Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation (Suetin 2001 ):
(
1
−
x
2
)
y
″
−
(
2
α
+
1
)
x
y
′
+
n
(
n
+
2
α
)
y
=
0.
{\displaystyle (1-x^{2})y''-(2\alpha +1)xy'+n(n+2\alpha )y=0.\,}
When α = 1/2, the equation reduces to the Legendre equation, and the Gegenbauer polynomials reduce to the Legendre polynomials .
When α = 1, the equation reduces to the Chebyshev differential equation , and the Gegenbauer polynomials reduce to the Chebyshev polynomials of the second kind.[ 1]
C
n
(
α
)
(
z
)
=
(
2
α
)
n
n
!
2
F
1
(
−
n
,
2
α
+
n
;
α
+
1
2
;
1
−
z
2
)
.
{\displaystyle C_{n}^{(\alpha )}(z)={\frac {(2\alpha )_{n}}{n!}}\,_{2}F_{1}\left(-n,2\alpha +n;\alpha +{\frac {1}{2}};{\frac {1-z}{2}}\right).}
(Abramowitz & Stegun p. 561 ). Here (2α)n is the rising factorial . Explicitly,
C
n
(
α
)
(
z
)
=
∑
k
=
0
⌊
n
/
2
⌋
(
−
1
)
k
Γ
(
n
−
k
+
α
)
Γ
(
α
)
k
!
(
n
−
2
k
)
!
(
2
z
)
n
−
2
k
.
{\displaystyle C_{n}^{(\alpha )}(z)=\sum _{k=0}^{\lfloor n/2\rfloor }(-1)^{k}{\frac {\Gamma (n-k+\alpha )}{\Gamma (\alpha )k!(n-2k)!}}(2z)^{n-2k}.}
From this it is also easy to obtain the value at unit argument:
C
n
(
α
)
(
1
)
=
Γ
(
2
α
+
n
)
Γ
(
2
α
)
n
!
.
{\displaystyle C_{n}^{(\alpha )}(1)={\frac {\Gamma (2\alpha +n)}{\Gamma (2\alpha )n!}}.}
C
n
(
α
)
(
x
)
=
(
2
α
)
n
(
α
+
1
2
)
n
P
n
(
α
−
1
/
2
,
α
−
1
/
2
)
(
x
)
.
{\displaystyle C_{n}^{(\alpha )}(x)={\frac {(2\alpha )_{n}}{(\alpha +{\frac {1}{2}})_{n}}}P_{n}^{(\alpha -1/2,\alpha -1/2)}(x).}
in which
(
θ
)
n
{\displaystyle (\theta )_{n}}
represents the rising factorial of
θ
{\displaystyle \theta }
.
One therefore also has the Rodrigues formula
C
n
(
α
)
(
x
)
=
(
−
1
)
n
2
n
n
!
Γ
(
α
+
1
2
)
Γ
(
n
+
2
α
)
Γ
(
2
α
)
Γ
(
α
+
n
+
1
2
)
(
1
−
x
2
)
−
α
+
1
/
2
d
n
d
x
n
[
(
1
−
x
2
)
n
+
α
−
1
/
2
]
.
{\displaystyle C_{n}^{(\alpha )}(x)={\frac {(-1)^{n}}{2^{n}n!}}{\frac {\Gamma (\alpha +{\frac {1}{2}})\Gamma (n+2\alpha )}{\Gamma (2\alpha )\Gamma (\alpha +n+{\frac {1}{2}})}}(1-x^{2})^{-\alpha +1/2}{\frac {d^{n}}{dx^{n}}}\left[(1-x^{2})^{n+\alpha -1/2}\right].}
An alternative normalization sets
C
n
(
α
)
(
1
)
=
1
{\displaystyle C_{n}^{(\alpha )}(1)=1}
. Assuming this alternative normalization, the derivatives of Gegenbauer are expressed in terms of Gegenbauer:[ 2]
d
q
d
x
q
C
q
+
2
j
+
1
(
α
)
(
x
)
=
2
q
(
q
+
2
j
+
1
)
!
(
q
−
1
)
!
Γ
(
q
+
2
j
+
2
α
+
1
)
∑
i
=
0
j
(
2
i
+
α
+
1
)
Γ
(
2
i
+
2
α
+
1
)
(
2
i
+
1
)
!
(
j
−
i
)
!
×
Γ
(
q
+
j
+
i
+
α
+
1
)
Γ
(
j
+
i
+
α
+
2
)
(
q
+
j
−
i
−
1
)
!
C
2
i
+
1
(
α
)
(
x
)
{\displaystyle {\begin{aligned}{\frac {d^{q}}{dx^{q}}}C_{q+2j+1}^{(\alpha )}(x)={\frac {2^{q}(q+2j+1)!}{(q-1)!\Gamma (q+2j+2\alpha +1)}}&\sum _{i=0}^{j}{\frac {(2i+\alpha +1)\Gamma (2i+2\alpha +1)}{(2i+1)!(j-i)!}}\\&\times {\frac {\Gamma (q+j+i+\alpha +1)}{\Gamma (j+i+\alpha +2)}}(q+j-i-1)!C_{2i+1}^{(\alpha )}(x)\end{aligned}}}
Orthogonality and normalization
For a fixed α > -1/2 , the polynomials are orthogonal on [−1, 1] with respect to the weighting function (Abramowitz & Stegun p. 774 )
w
(
z
)
=
(
1
−
z
2
)
α
−
1
2
.
{\displaystyle w(z)=\left(1-z^{2}\right)^{\alpha -{\frac {1}{2}}}.}
To wit, for n ≠ m ,
∫
−
1
1
C
n
(
α
)
(
x
)
C
m
(
α
)
(
x
)
(
1
−
x
2
)
α
−
1
2
d
x
=
0.
{\displaystyle \int _{-1}^{1}C_{n}^{(\alpha )}(x)C_{m}^{(\alpha )}(x)(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx=0.}
They are normalized by
∫
−
1
1
[
C
n
(
α
)
(
x
)
]
2
(
1
−
x
2
)
α
−
1
2
d
x
=
π
2
1
−
2
α
Γ
(
n
+
2
α
)
n
!
(
n
+
α
)
[
Γ
(
α
)
]
2
.
{\displaystyle \int _{-1}^{1}\left[C_{n}^{(\alpha )}(x)\right]^{2}(1-x^{2})^{\alpha -{\frac {1}{2}}}\,dx={\frac {\pi 2^{1-2\alpha }\Gamma (n+2\alpha )}{n!(n+\alpha )[\Gamma (\alpha )]^{2}}}.}
Applications
The Gegenbauer polynomials appear naturally as extensions of Legendre polynomials in the context of potential theory and harmonic analysis . The Newtonian potential in R n has the expansion, valid with α = (n − 2)/2,
1
|
x
−
y
|
n
−
2
=
∑
k
=
0
∞
|
x
|
k
|
y
|
k
+
n
−
2
C
k
(
α
)
(
x
⋅
y
|
x
|
|
y
|
)
.
{\displaystyle {\frac {1}{|\mathbf {x} -\mathbf {y} |^{n-2}}}=\sum _{k=0}^{\infty }{\frac {|\mathbf {x} |^{k}}{|\mathbf {y} |^{k+n-2}}}C_{k}^{(\alpha )}({\frac {\mathbf {x} \cdot \mathbf {y} }{|\mathbf {x} ||\mathbf {y} |}}).}
When n = 3, this gives the Legendre polynomial expansion of the gravitational potential . Similar expressions are available for the expansion of the Poisson kernel in a ball (Stein & Weiss 1971 ).
It follows that the quantities
C
k
(
(
n
−
2
)
/
2
)
(
x
⋅
y
)
{\displaystyle C_{k}^{((n-2)/2)}(\mathbf {x} \cdot \mathbf {y} )}
are spherical harmonics , when regarded as a function of x only. They are, in fact, exactly the zonal spherical harmonics , up to a normalizing constant.
Gegenbauer polynomials also appear in the theory of positive-definite functions .
The Askey–Gasper inequality reads
∑
j
=
0
n
C
j
α
(
x
)
(
2
α
+
j
−
1
j
)
≥
0
(
x
≥
−
1
,
α
≥
1
/
4
)
.
{\displaystyle \sum _{j=0}^{n}{\frac {C_{j}^{\alpha }(x)}{2\alpha +j-1 \choose j}}\geq 0\qquad (x\geq -1,\,\alpha \geq 1/4).}
In spectral methods for solving differential equations, if a function is expanded in the basis of Chebyshev polynomials and its derivative is represented in a Gegenbauer/ultraspherical basis, then the derivative operator becomes a diagonal matrix , leading to fast banded matrix methods for large problems.[ 3]
Other properties
Dirichlet–Mehler-type integral representation:[ 4]
P
n
(
α
,
α
)
(
cos
θ
)
P
n
(
α
,
α
)
(
1
)
=
C
n
(
α
+
1
2
)
(
cos
θ
)
C
n
(
α
+
1
2
)
(
1
)
=
2
α
+
1
2
Γ
(
α
+
1
)
π
1
2
Γ
(
α
+
1
2
)
(
sin
θ
)
−
2
α
∫
0
θ
cos
(
(
n
+
α
+
1
2
)
ϕ
)
(
cos
ϕ
−
cos
θ
)
−
α
+
1
2
d
ϕ
,
{\displaystyle {\frac {P_{n}^{(\alpha ,\alpha )}\left(\cos \theta \right)}{P_{n}^{(\alpha ,\alpha )}\left(1\right)}}={\frac {C_{n}^{(\alpha +{\frac {1}{2}})}\left(\cos \theta \right)}{C_{n}^{(\alpha +{\frac {1}{2}})}\left(1\right)}}={\frac {2^{\alpha +{\frac {1}{2}}}\Gamma \left(\alpha +1\right)}{{\pi }^{\frac {1}{2}}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}(\sin \theta )^{-2\alpha }\int _{0}^{\theta }{\frac {\cos \left((n+\alpha +{\tfrac {1}{2}})\phi \right)}{(\cos \phi -\cos \theta )^{-\alpha +{\frac {1}{2}}}}}\,\mathrm {d} \phi ,}
Laplace-type integral representation
P
n
(
α
,
α
)
(
cos
θ
)
P
n
(
α
,
α
)
(
1
)
=
C
n
(
α
+
1
2
)
(
cos
θ
)
C
n
(
α
+
1
2
)
(
1
)
=
Γ
(
α
+
1
)
π
1
2
Γ
(
α
+
1
2
)
∫
0
π
(
cos
θ
+
i
sin
θ
cos
ϕ
)
n
(
sin
ϕ
)
2
α
d
ϕ
{\displaystyle {\begin{aligned}{\frac {P_{n}^{(\alpha ,\alpha )}(\cos \theta )}{P_{n}^{(\alpha ,\alpha )}(1)}}&={\frac {C_{n}^{\left(\alpha +{\frac {1}{2}}\right)}(\cos \theta )}{C_{n}^{\left(\alpha +{\frac {1}{2}}\right)}(1)}}\\&={\frac {\Gamma (\alpha +1)}{\pi ^{\frac {1}{2}}\Gamma \left(\alpha +{\frac {1}{2}}\right)}}\int _{0}^{\pi }(\cos \theta +i\sin \theta \cos \phi )^{n}(\sin \phi )^{2\alpha }\mathrm {~d} \phi \end{aligned}}}
Addition formula :[ 5]
C
n
λ
(
cos
θ
1
cos
θ
2
+
sin
θ
1
sin
θ
2
cos
ϕ
)
=
∑
k
=
0
n
a
n
,
k
λ
(
sin
θ
1
)
k
C
n
−
k
λ
+
k
(
cos
θ
1
)
(
sin
θ
2
)
k
C
n
−
k
λ
+
k
(
cos
θ
2
)
⋅
C
k
λ
−
1
/
2
(
cos
ϕ
)
,
a
n
,
k
λ
constants
{\displaystyle {\begin{aligned}&C_{n}^{\lambda }\left(\cos \theta _{1}\cos \theta _{2}+\sin \theta _{1}\sin \theta _{2}\cos \phi \right)\\&\quad =\sum _{k=0}^{n}a_{n,k}^{\lambda }\left(\sin \theta _{1}\right)^{k}C_{n-k}^{\lambda +k}\left(\cos \theta _{1}\right)\left(\sin \theta _{2}\right)^{k}C_{n-k}^{\lambda +k}\left(\cos \theta _{2}\right)\\&\quad \cdot C_{k}^{\lambda -1/2}(\cos \phi ),\quad a_{n,k}^{\lambda }{\text{ constants }}\end{aligned}}}
Asymptotics
Given fixed
λ
∈
(
0
,
1
)
,
M
∈
{
1
,
2
,
…
}
,
δ
∈
(
0
,
π
/
2
)
{\displaystyle \lambda \in (0,1),M\in \{1,2,\dots \},\delta \in (0,\pi /2)}
, uniformly for all
θ
∈
[
δ
,
π
−
δ
]
{\displaystyle \theta \in [\delta ,\pi -\delta ]}
, for
n
→
∞
{\displaystyle n\to \infty }
,[ 6] [ 7]
C
n
(
λ
)
(
cos
θ
)
=
2
2
λ
Γ
(
λ
+
1
2
)
π
1
2
Γ
(
λ
+
1
)
(
2
λ
)
n
(
λ
+
1
)
n
(
∑
m
=
0
M
−
1
(
λ
)
m
(
1
−
λ
)
m
m
!
(
n
+
λ
+
1
)
m
cos
θ
n
,
m
(
2
sin
θ
)
m
+
λ
+
R
M
(
θ
)
)
{\displaystyle C_{n}^{(\lambda )}\left(\cos \theta \right)={\frac {2^{2\lambda }\Gamma \left(\lambda +{\frac {1}{2}}\right)}{{\pi }^{\frac {1}{2}}\Gamma \left(\lambda +1\right)}}{\frac {\left(2\lambda \right)_{n}}{\left(\lambda +1\right)_{n}}}\left(\sum _{m=0}^{M-1}{\dfrac {{\left(\lambda \right)_{m}}{\left(1-\lambda \right)_{m}}}{m!\,{\left(n+\lambda +1\right)_{m}}}}{\dfrac {\cos \theta _{n,m}}{(2\sin \theta )^{m+\lambda }}}+R_{M}(\theta )\right)}
where
(
⋅
)
m
{\displaystyle (\cdot )_{m}}
is the Pochhammer symbol , and
θ
n
,
m
=
(
n
+
m
+
λ
)
θ
−
1
2
(
m
+
λ
)
π
{\displaystyle \theta _{n,m}=(n+m+\lambda )\theta -{\tfrac {1}{2}}(m+\lambda )\pi }
The remainder
R
M
=
O
(
1
n
M
)
{\displaystyle R_{M}=O\left({\frac {1}{n^{M}}}\right)}
has an explicit upper bound:
|
R
M
(
θ
)
|
≤
(
2
/
π
)
sin
(
λ
π
)
Γ
(
n
+
2
λ
)
Γ
(
λ
)
Γ
(
M
+
λ
)
Γ
(
M
−
λ
+
1
)
M
!
Γ
(
n
+
M
+
λ
+
1
)
max
(
|
cos
θ
|
−
1
,
2
sin
θ
)
(
2
sin
θ
)
M
+
λ
{\displaystyle |R_{M}(\theta )|\leq (2/\pi )\sin(\lambda \pi ){\frac {\Gamma (n+2\lambda )}{\Gamma (\lambda )}}{\frac {\Gamma (M+\lambda )\Gamma (M-\lambda +1)}{M!\Gamma (n+M+\lambda +1)}}{\frac {\max \left(|\cos \theta |^{-1},2\sin \theta \right)}{(2\sin \theta )^{M+\lambda }}}}
where
Γ
{\displaystyle \Gamma }
is the Gamma function.
Other asymptotic formulas can be obtained as special cases of asymptotic formulas for the more general Jacobi polynomials.
See also
References
Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 22" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 773. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 . *Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Stein, Elias ; Weiss, Guido (1971), Introduction to Fourier Analysis on Euclidean Spaces , Princeton, N.J.: Princeton University Press, ISBN 978-0-691-08078-9 .
Szegő, G. (1975). Orthogonal Polynomials . Colloquium Publications. Vol. XXIII (4th ed.). Providence, RI: American Mathematical Society .
Suetin, P.K. (2001) [1994], "Ultraspherical polynomials" , Encyclopedia of Mathematics , EMS Press .
Specific