Frucht graph
In the mathematical field of graph theory, the Frucht graph is a cubic graph with 12 vertices, 18 edges, and no nontrivial symmetries.[1] It was first described by Robert Frucht in 1949.[2] The Frucht graph can be constructed from the LCF notation: [−5,−2,−4,2,5,−2,2,5,−2,−5,4,2]. PropertiesThe Frucht graph is one of the five smallest cubic graphs possessing only a single graph automorphism, the identity: every vertex can be distinguished topologically from every other vertex.[3] Such graphs are called asymmetric (or identity) graphs. Frucht's theorem states that any finite group can be realized as the group of symmetries of a graph,[4] and a strengthening of this theorem, also due to Frucht, states that any finite group can be realized as the symmetries of a 3-regular graph.[2] The Frucht graph provides an example of this strengthened realization for the trivial group. The characteristic polynomial of the Frucht graph is . The Frucht graph is a pancyclic, Halin graph with chromatic number 3, chromatic index 3, radius 3, and diameter 4. Like every Halin graph, the Frucht graph is polyhedral (planar and 3-vertex-connected)[5] and Hamiltonian, with girth 3. Its independence number is 5. Gallery
ReferencesWikimedia Commons has media related to Frucht graph.
|