Let denote a flat vector bundle, and be the covariant derivative associated to the flat connection on E.
Let denote the vector space (in fact a sheaf of modules over ) of differential forms on X with values in E. The covariant derivative defines a degree-1 endomorphismd, the differential of , and the flatness condition is equivalent to the property .
A trivialization of a flat vector bundle is said to be flat if the connection form vanishes in this trivialization. An equivalent definition of a flat bundle is the choice of a trivializing atlas with locally constant transition maps.
Examples
Trivial line bundles can have several flat bundle structures. An example is the trivial bundle over with the connection forms 0 and . The parallel vector fields are constant in the first case, and proportional to local determinations of the square root in the second.